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1. Introduction

One of the surprising discoveries of dynamical systems theory is
that many deterministic systems with non-zero Lyapunov exponents
satisfy the same limit theorems as the sums of independent random
variables. Much less is known for the zero exponent case where only
a few examples have been analyzed. In this survey we consider the
extreme case of toral translations where each map not only has zero
exponents but is actually an isometry. These systems were studied
extensively due to their relations to number theory, to the theory of
integrable systems and to geometry. Surprisingly many natural ques-
tions are still open. We review known results as well as the methods to
obtain them and present a list of open problems. Given a vast amount
of work on this subject, it is impossible to provide a comprehensive
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treatment in this short survey. Therefore we treat the topics closest
to our research interests in more details while some other subjects are
mentioned only briefly. Still we hope to provide the reader with the
flavor of the subject and introduce some tools useful in the study of
toral translations, most notably, various renormalization techniques.

Let X = Td, µ be the Haar measure on X and Tα(x) = x+ α.
The most basic question in smooth ergodic theory is the behavior

of ergodic sums. Given a map T and a zero mean observable A(·) let

(1) AN(x) =
N−1∑
n=0

A(T nx)

If there is no ambiguity, we may write AN for AN(x). Conversely we
may use the notation AN(α, x) to indicate that the underlying map is
the translation of vector α. The uniform distribution of the orbit of
x by T is characterized by the convergence to 0 of AN(x)/N . In the
case of toral translations Tα with irrational frequency vector uniform
distribution holds for all points. The study of the ergodic sums is
then useful to quantify the rate of uniform distribution as we will see
in Section 3 where discrepancy functions are discussed. The question
about the distribution of ergodic sums is analogous to the the Central
Limit Theorem in probability theory. One can also consider analogues
of other classical probabilistic results. In this survey we treat two such
questions. In Section 4 we consider so called Poisson regime where (1)

is replaced by
∑N−1

n=0 χCN (T nx) and the sets CN are scaled in such a
way that only finite number of terms are non-zero for typical x. Such
sums appear in several questions in mathematical physics, including
quantum chaos [90] and Boltzmann-Grad limit of several mechanical
systems [92]. They also describe the resonances in the study of ergodic
sums for toral translations as we will see in Section 6. In Section 7 we
consider Borel-Cantelli type questions where one takes a sequence of
shrinking sets and studies a number of times a typical orbit hits whose
sets. This question is intimately related to some classical problems in
the theory of Diophantine approximations.

The ergodic sums above toral translations also appear in natural
dynamical systems such as skew products, cylindrical cascades and spe-
cial flows. Discrete time systems related to ergodic sums over trans-
lations are treated in Section 8 while flows are treated in Section 9.
These systems give additional motivation to study the ergodic sums
(1) for smooth functions having singularities of various types: power,
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fractional power, logarithmic... Ergodic sums for functions with singu-
larities are discussed in Section 2. Finally in Section 10 we present the
results related to action of several translations at the same time.

1.1. Notation. We say that a vector α = (α1, . . . , αd) ∈ Rd is
irrational if {1, α1, . . . , αd} are linearly independent over Q.

For x ∈ Rd, we use the notation {x} := (x1, . . . , xd) mod (1). We
denote by ‖x‖ the closest signed distance of some x ∈ R to the integers.

Assuming that d ∈ N is fixed, for σ > 0 we denote by D(σ) ⊂ Rd

the set of Diophantine vectors with exponent σ, that is

(2) D(σ) = {α : ∃C ∀k ∈ Zd − 0,m ∈ Z |(k, α)−m| ≥ C|k|−d−σ}

Let us recall that D(σ) has a full measure if σ > 0, while D(0) is an
uncountable set of zero measure and D(σ) is empty for σ < 0. The set
D(0) is called the set of constant type vector or badly approximable
vectors. An irrational vector α that is not Diophantine for any σ > 0
is called Liouville.

We denote by C the standard Cauchy random variable with density
1

π(1+x2)
. Normal random variable with zero mean and variance D2 will

be denoted by N(D2). Thus N(D2) has density 1
2πD

e−x
2/2D2

. We will
write simply N for N(1). Next, P(X,µ) will denote the Poisson pro-
cess on X with measure µ (we refer the reader to Section 5.2 for the
definition and basic properties of Poisson processes).

2. Ergodic sums for smooth functions and functions with
singularities

2.1. Smooth observables. For toral translations, the ergodic sums
of smooth observables are well understood. Namely if A is sufficiently
smooth with zero mean then for almost all α, A is a coboundary, that
is, there exists B(α, x) such that

(3) A(x) = B(x+ α, α)−B(x, α).

Namely if A(x) =
∑

k 6=0 ake
2πi(k,x) then

B(α, x) =
∑
k 6=0

bke
2πi(k,x) where bk =

ak
ei2π(k,α) − 1

.

The above series converges in L2 provided α ∈ D(σ) and A ∈ Hσ =
{A :

∑
k |ak|k|(σ+d)|2 <∞}. Note that (3) implies that

AN(x) = B(x+Nα,α)−B(x, α)
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giving a complete description of the behavior of ergodic sums for almost
all α. In particular we have

Corollary 1. If α is uniformly distributed on Td then AN(x) has
a limiting distribution as N →∞, namely

AN ⇒ B(y, α)−B(x, α)

where (y, α) is uniformly distributed on Td × Td.

Proof. We need to show that as N → ∞ the random vector
(α,Nα) converge to a vector with coordinates independent random
variables uniformly distributed on Td × Td. To this end it suffices to
check that if φ(x, y) is a smooth function on Td × Td then

lim
N→∞

∫
Td
φ(α,Nα)dα =

∫
Td×Td

φ(α, β)dαdβ

but this is easily established by considering the Fourier series of φ. �

We will see in Section 9 how our understanding of ergodic sums
for smooth functions can be used to derive ergodic properties of area
preserving flows on T2 without fixed points.

On the other hand there are many open questions related to the case
when the observable A is not smooth enough for (3) to hold. Below we
mention several classes of interesting observables.

2.2. Observables with singularities. Special flows above circle
rotations and under ceiling functions that are smooth except for some
singularities naturally appear in the study of conservative flows on
surfaces with fixed points.

Another motivation for studying ergodic sums for functions with
singularities is the case of meromorphic functions, whose sums appear
in questions related to both number theory [48] and ergodic theory
[103].

2.2.1. Observables with logarithmic singularities. In the study of
conservative flows on surfaces, non degenerate saddle singularities are
responsible for logarithmic singularities of the ceiling function.

Ceiling functions with logarithmic singularities also appear in the
study of multi-valued Hamiltonians on the two torus. In [3], Arnold
investigated such flows and showed that the torus decomposes into cells
that are filled up by periodic orbits and one open ergodic component.
On this component, the flow can be represented as a special flow over a
interval exchange maps of the circle and under a ceiling function that is
smooth except for some logarithmic singularities. The singularities can
be asymmetric since the coefficient in front of the logarithm is twice as
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big on one side of the singularity as the one on the other side, due to
the existence of homoclinic loops (see Figure 1).

Figure 1. Multivalued Hamiltonian flow. Note that the
orbits passing to the left of the saddle spend approxi-
mately twice longer time comparing to the orbits passing
to the right of the saddle and starting at the same dis-
tance from the separatrix since they pass near the saddle
twice.

More motivations for studying function with logarithmic singulari-
ties as well as some numerical results for rotation numbers of bounded
type are presented in [69].

A natural question is to understand the fluctuations of the ergodic
sums for these functions as the frequency α of the underlying rotation
is random as well as the base point x. Since Fourier coefficients of the
symmetric logarithm function have the asymptotics similar to that of
the indicator function of an interval one may expect that the results
about the latter that we will discuss in Section 3 can be extended to
the former.

Question 1. Suppose that A is smooth away from a finite set of
points x1, x2 . . . xk and near xj, A(x) = a±j ln |x− xj| + rj(x) where −
sign is taken if x < xj, + sign is taken if x > xj and rj are smooth
functions. What can be said about the distribution of AN(α, x)/ lnN
as x and α are random?

2.2.2. Observables with power like singularities. When considering
conservative flows on surfaces with degenerate saddles one is led to
study the ergodic sums of observables with integrable power like sin-
gularities (more discussion of these flows will be given in Section 9).
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Special flows above irrational rotations of the circle under such ceiling
functions are called Kocergin flows.

The study of ergodic sums for smooth ergodic flows with nonde-
generate hyperbolic singular points on surfaces of genus p ≥ 2 shows
that these flows are in general not mixing (see Section 9). A contrario
Kocergin showed that special flows above irrational rotations and un-
der ceiling functions with integrable power like singularities are always
mixing. This is due to the important deceleration next to the singular-
ity that is responsible for a shear along orbits that separates the points
sufficiently to produce mixing. In other words, the mixing is due to
large oscillations of the ergodic sums. In this note we will be frequently
interested in the distribution properties of these sums.

One may also consider the case of non-integrable power singularities
since they naturally appear in problems of ergodic theory and number
theory. The following result answers a question of [48].

Theorem 2. ([117]) If A has one simple pole on T1 and (α, x) is
uniformly distributed on T2 then AN

N
has limiting distribution as N →

∞.

The function A in Theorem 2 has a symmetric singularity of the
form 1/x that is the source of cancellations in the ergodic sums.

Question 2. What happens for an asymmetric singularity of the
type 1/|x|?

Question 3. What happens in the quenched setting where α is
fixed?

We now present several generalizations of Theorem 2.

Theorem 3. Let A = Ã(x) +
c−χx<x0+c+χx>x0

|x−x0|a where Ã is smooth

and a > 1.

(a) If (α, x) is uniformly distributed on T2 then
AN
Na

converges in

distribution.
(b) For almost every x fixed, if α is uniformly distributed on T then

AN(α, x)

Na
converge to the same limit as in part (a).

Theorem 4. [87] If A has zero mean and is smooth except for
a singularity at 0 of type |x|−a, a ∈ (0, 1) then AN/N

a converges in
distribution.

The proof of Theorem 4 is inspired by the proof of Theorem 10 of
Section 3 which will be presented in Section 6.3.
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Marklof proved in [91] that if α ∈ D(σ) with σ < (1 − a)/a, then
for A as in Theorem 4 AN(α, α)/N → 0.

Question 4. What happens for other angles α and other type of
singularities, including the non integrable ones for which the ergodic
theorem does not necessarily hold.

Another natural generalization of Theorem 2 is to consider mero-
morphic functions. Let A be such a function with highest pole of order
m. Thus A can be written as

A(x) =
r∑
j=1

cj
(x− xj)m

+ Ã(x)

where the highest pole of Ã has order at most m− 1.

Theorem 5. (a) Let A be fixed and let α be distributed according

to a smooth density on T. Then for any x ∈ T,
AN(α, x)

Nm
has a limiting

distribution as N →∞.
(b) Let Ã, c1, . . . cr be fixed while (α, x, x1 . . . xr) are distributed ac-

cording to a smooth density on on Tr+2 then
AN(α, x)

Nm
has a limiting

distribution as N →∞.
(c) If (x1, x2 . . . xr) is a fixed irrational vector then for almost ev-

ery x ∈ T the limit distribution in part (a) is the same as the limit
distribution in part (b).

Proofs of Theorems 3 and 5 are sketched in Section 6.
It will be apparent from the proof of Theorem 5 that the limit

distribution in part (a) is not the same for all x1, x2 . . . xj. For example
if xj = jx1 leads to an exceptional distribution since a close approach
to x1 and x2 by the orbit of x should be followed by a close approach
to xj for j ≥ 3. We will see that phenomena appears in many limit
theorems (see e.g Theorem 9, Theorem 25 and Question 52, Theorem
38 and Question 38, as well as [92]).

Question 5. What can be said about more general meromorphic
functions such as sin 2πx/(sin 2πx+ 3 cos 2πy) on Td with d > 1?
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3. Ergodic sums of characteristic functions. Discrepancy
functions

The case where A = χΩ is a classical subject in number theory.
Define the discrepancy function

DN(Ω, α, x) =
N−1∑
n=0

χΩ(x+ nα)−N Vol(Ω)

Vol(Td)
.

Uniform distribution of the sequence x+ kα on Td is equivalent to
the fact that, for regular sets Ω, DN(Ω, α, x)/N → 0 as N → ∞. A
step further in the description of the uniform distribution is the study
of the rate of convergence to 0 of DN(Ω, α, x)/N .

In d = 1 it is known that if α ∈ T − Q is fixed, the discrep-
ancy DN(Ω, α, x)/N displays an oscillatory behavior according to the
position of N with respect to the denominators of the best rational ap-
proximations of α. A great deal of work in Diophantine approximation
has been done on estimating the discrepancy function in relation with
the arithmetic properties of α ∈ T, and more generally for α ∈ Td.

3.1. The maximal discrepancy. Let

(4) DN(α) = sup
Ω∈B

DN(Ω, α, 0)

where the supremum is taken over all sets Ω in some natural class of
sets B, for example balls or boxes (product of intervals).

The case of (straight) boxes was extensively studied, and growth
properties of the sequenceDN(α) were obtained with a special emphasis
on their relations with the Diophantine approximation properties of α.
In particular, following earlier advances of [75, 48, 97, 64, 114] and
others, [8] proves

Theorem 6. Let

DN(α) = sup
Ω−box

DN(Ω, α, 0)

Then for any positive increasing function φ we have
(5) ∑

n

φ(n)−1 <∞ ⇐⇒ DN(α)

(lnN)dφ(ln lnN)

is bounded for
almost every α ∈ Td.

In dimension d = 1, this result is the content of Khinchine theorems
obtained in the early 1920’s [64], and it follows easily from well-known
results from the metrical theory of continued fractions (see for example
the introduction of [8]). The higher dimensional case is significantly
more difficult and the cited bound was only obtained in the 1990s.
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The bound in (5) focuses on how bad can the discrepancy become
along a subsequence of N , for a fixed α in a full measure set. In a
sense, it deals with the worst case scenario and does not capture the
oscillations of the discrepancy. On the other hand, the restriction on
α is necessary, since given any εn → 0 it is easy to see that for α ∈ T
sufficiently Liouville, the discrepancy (relative to intervals) can be as
bad as Nnεn along a suitable sequence Nn (large multiples of Liouville
denominators).

For d = 1, it is not hard to see, using continued fractions, that

for any α : lim sup DN (α)
lnN

> 0, lim inf DN(α) ≤ C; and for α ∈ D(0)

lim sup DN (α)
lnN

< +∞. The study of higher dimensional counterparts to
these results raises several interesting questions.

Question 6. Is it true that lim sup DN (α)

lndN
> 0 for all α ∈ Td?

Question 7. Is it true that there exists α such that lim sup DN (α)

lndN
<

+∞?

Question 8. What can one say about lim inf DN (α)
aN

for a.e. α,
where aN is an adequately chosen normalization? for every α?

Question 9. Same questions as Questions 6–8 when boxes are re-
placed by balls.

Question 10. Same questions as Questions 6–8 for the isotropic
discrepancy, when boxes are replaced by the class of all convex sets [79].

3.2. Limit laws for the discrepancy as α is random. In this
survey, we will mostly concentrate on the distribution of the discrep-
ancy function as α is random. The above discussion naturally raises
the following question.

Question 11. Let α be uniformly distributed on Td. Is it true that
DN (α)

lndN
converges in distribution as N →∞?

Why do we need to take α random? The answer is that for fixed α
the discrepancy does not have a limit distribution.

For example for d = 1 the Denjoy-Koksma inequality says that

|Aqn − qn
∫
A(x)dx| ≤ 2V

where qn is the n-th partial convergent to α and V denotes the total
variation of A. In particular Dqn(I, α, x) can take at most 3 values.

In higher dimensions one can show that if Ω is either a box or any
other convex set then for almost all α and almost all tori, when x is
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random the variable
DN(Ω,Rd/L, α, ·)

aN
does not converge to a non-trivial limiting distribution for any choice
of aN = aN(α,L) (see discussion in the introduction of [29]).

Question 12. Is this true for all α,L?

Question 13. Study the distributions which can appear as weak

limits of
DN(Ω, α, ·)

aN
, in particular their relation with number theoretic

properties of α.

Let us consider the case d = 1 (so the sets of interest are intervals
and we will write I instead of Ω.) It is easy to see that all limit
distributions are atomic for all I iff α ∈ Q.

Question 14. Is it true that all limit distributions are either atomic
or Gaussian for almost all I iff α is of bounded type?

Evidence for the affirmative answer is contained in the following
results.

Theorem 7. ([55]) If α 6∈ Q and I = [0, 1/2] then there is a

sequence Nj such that
DNj(I, α, ·)

j
converges to N.

Instead of considering subsequences, it is possible to randomize N.

Theorem 8. Let α be a quadratic surd.

(a) ([10]) If (x, a, l) is uniformly distributed on T3 then
D[aN ]([0, l], α, x)√

lnN
converges to N(σ2) for some σ2 6= 0.

(b) ([11]) If M is uniformly distributed on [1, N ] and l is rational

then there are constants C(α, l), σ(α, l) such that
DM([0, l], α, 0)− C(α, l) lnN√

lnN
converges to N(σ2(α, l)).

Note that even though we have normalized the discrepancy by sub-
tracting the expected value an additional normalization is required in
Theorem 8(b). The reason for this is explained at the end of Section 9.5.

So if one wants to have a unique limit distribution for all N one
needs to allow random α.

The case when d = 1 was studied by Kesten. Define

V (u, v, w) =
∞∑
k=1

sin(2πu) sin(2πv) sin(2πw)

k2
.
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If (r, q) are positive integers let

θ(r, q) =
Card(j : 0 ≤ j ≤ q − 1 : gcd(j, r, q) = 1)

Card(j, k : 0 ≤ j, k ≤ q − 1 : gcd(j, k, q) = 1)
.

Finally let

c(r) =


π3

12

[∑q−1
r=0 θ(p, q)

∫ 1

0

∫ 1

0
V (u, rp

q
, v)dudv

]−1

if r = p
q

and gcd(p, q) = 1

π3

12

[∫ 1

0

∫ 1

0

∫ 1

0
V (u, r, v)dudrdv

]−1

if r is irrational.

Theorem 9. ([61, 62]) If (α, x) is uniformly distributed on T2 then
DN ([0,l],α,x)
c(l) lnN

converges to C.

Note that the normalizing factor is discontinuous as a function of
the length of the interval at rational values.

A natural question is to extend Theorem 9 to higher dimensions.
The first issue is to decide which sets Ω to consider instead of intervals.
It appears that a quite flexible assumption is that Ω is semialgebraic,
that is, it is defined by a finite number of algebraic inequalities.

Question 15. Suppose that Ω is semialgebraic then there is a se-
quence aN = aN(Ω) such that for a random translation of a random

torus
DN(Ω,Rd/L, α, x)

aN
converges in distribution as N →∞.

By random translation of a random torus, we mean a translation
of random angle α on a torus Rd/L where L = AZd and the triple
(α, x,A) has a smooth density on Td × Td × GL(R, d). Notice that
comparing to Kesten’s result of Theorem 9, Question 15 allows for
additional randomness, namely, the torus is random. In particular, for
d = 1, the study of the discrepancy of visits to [0, l] on the torus R/Z is
equivalent to the study of the discrepancy of visits to [0, 1] on the torus
R/(l−1Z). Thus the purpose of the extra randomness is to avoid the
irregular dependence on parameters observed in Theorem 9 (cf. also
[106, 107]).

So far Question 15 has been answered for two classes of sets: strictly
convex sets and (tilted) boxes, which includes the two natural counter-
parts to intervals in higher dimension that are balls and boxes.

Given a convex body Ω, we consider the family Ωr of bodies ob-
tained from Ω by rescaling it with a ratio r > 0 (we apply to Ω the
homothety centered at the origin with scale r). We suppose r < r0 so
that the rescaled bodies can fit inside the unit cube of Rd. We define

(6) DN(Ω, r, α, x) =
N−1∑
n=0

χΩr(x+ nα)−NVol(Ωr)
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Theorem 10. ([28]) If (r, α, x) is uniformly distributed on X =

[a, b]×Td×Td then DN (Ω,r,α,x)

r(d−1)/2N(d−1)/2d has a limit distribution as N →∞.

The form of the limiting distribution is given in Theorem 18 in
Section 6.

In the case of boxes we recover the same limit distribution as in
Kesten but with a higher power of the logarithm in the normalization.

Theorem 11. ([29]) In the context of Question 15, if Ω is a box,

then
DN

c lndN
converges to C as N →∞.

Alternatively, one can consider gilded boxes, namely: for u =
(u1, . . . , ud) with 0 < ui < 1/2 for every i, we define a cube on the
d-torus by Cu = [−u1, u1] × . . . [−ud, ud]. Let η > 0 and MCu be the
image of Cu by a matrix M ∈ SL(d,R) such that

M = (aij) ∈ Gη = {|ai,i−1|, for every i and |ai,j| < η for every j 6= i}.

For a point x ∈ Td and a translation frequency vector α ∈ Td we denote
ξ = (u,M, α, x) and define the following discrepancy function

DN(ξ) = #{1 ≤ m ≤ N : (x+mα) mod 1 ∈MCu} − 2d (Πiui)N.

Fix d segments [vi, wi] such that 0 < vi < wi < 1/2∀i = 1, . . . , d. Let

(7) X = (u, α, x, (ai,j)) ∈ [v1, w1]× . . . [vd, wd]× T2d ×Gη

We denote by P the normalized restriction of the Lebesgue × Haar
measure on X. Then, the precise statement of Theorem 11 is

Theorem 12. ([29]) Let ρ = 1
d!

(
2
π

)2d+2
. If ξ is distributed accord-

ing to λ then DN (ξ)
ρ(lnN)d

converges to C as N →∞.

Question 16. Are Theorems 10–12 valid if
(a) L is fixed; (b) x is fixed?

Question 17. Describe large deviations for DN . That is, given
bN � aN where aN is the same as in Question 15, study the asymptotics
of P(DN ≥ bN). One can study this question in the annealed setting
when all variables are random or in the quenched setting where some
of them are fixed.

Question 18. Does a local limit theorem hold? That is, is it true
that given a finite interval J we have

lim
N→∞

aNP(DN ∈ J) = c|J |?
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4. Poisson regime

The results presented in the last section deal with the so called CLT
regime. This is the regime when, since the target set Ω is macroscopic
(having volume of order 1), if T was sufficiently mixing, one would
get the Central Limit Theorem for the ergodic sums of χΩ. In this
section we discuss Poisson (microscopic) regime, that is, we let Ω = ΩN

shrink so that E(DN(ΩN , α, x)) is constant. In this case, the sum in
the discrepancy consists of a large number of terms each one of which
vanishes with probability close to 1 so that typically only finitely many
terms are non-zero.

Theorem 13. ([88]) Suppose that Ω is bounded set whose boundary
has zero measure.

If (α, x) is uniformly distributed on Td×Td then both DN(N−1/dΩ, α, x)
and DN(N−1/dΩ, α, 0) converge in distribution.

Note that in this case the result is less sensitive to the shape of Ω
than in the case of sets of unit size.

We will see later (Theorem 16 in Section 6) that one can also handle
several sets at the same time.

Corollary 14. If (α, x) is uniformly distributed on Td × Td then
the following random variables have limit distributions

(a) N1/d min
0≤n<N

d(x+ nα, x̄) where x̄ is a given point in Td;

(b) N2/d min
0≤n<N

[A(x+nα)−A(x̄)] where A is a Morse function with

minimum at x̄.

Proof. To prove (a) note that N1/d min
0≤n<N

d(x+ nα, x̄) ≤ s iff the

number of points of the orbit of x of length N inside B(x̄, sN−1/d) is
zero.

To prove (b) note that if A is a Morse function and x is close to x̄
then A(x) ≈ A(x̄) + (D2A)(x̄)(x− x̄, x− x̄). �

There are two natural ways to extend this result.

Question 19. If S ⊂ Td is an analytic submanifold of codimension
q find the limit distribution of N1/q min

0≤n<N
d(x+ nα, S).

Question 20. Given a typical analytic function find a limit distri-

bution of N
1
d min

0≤n<N
|A(x+ nα)|.

As we shall see in Section 6.2 this question is closely related to
Question 5.
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5. Remarks on the proofs: Preliminaries.

In order to describe ideas of the proofs from Sections 2, 3, and 4 we
will first go over some preliminaries.

5.1. Lattices. By a random d-dimensional lattice (centered
at 0) we mean a lattice L = QZd where Q is distributed according to
Haar measure on G = SLd(R)/SLd(Z).

By a random d-dimensional affine lattice we mean an affine
lattice L = QZd + b where (Q, b) is distributed according to a Haar
measure on Ḡ = (SLd(R) n Rd)/(SLd(Z) n Zd). Here Ḡ is equipped
with the multiplication rule (A, a)(B, b) = (AB, a+ Ab).

We denote by gt the diagonal action on G given by

gt =


et/d . . . 0 0

0 . . . et/d 0
0 . . . 0 e−t


and for α ∈ Rd−1 we denote by Λα the horocyclic action

(8) Λα =


1 . . . 0 α1

0 . . . 1 αd
0 . . . 0 1

 .

The action of gt on the space of affine lattices G is partially hyper-
bolic and unstable manifolds are orbits of Λα where α ∈ Rd−1.

Similarly the action by gt := (gt, 0), defined on the space of affine
lattices is partially hyperbolic and unstable manifolds are orbits of
(Λα, x̄) where (α, x) ∈ (Rd−1)2 and

x̄ =


x1

xd−1

0

 .

For convenience, here and below we will use the notation x̄ = (x1, . . . , xd, 0)
for the column vector x̄.

We can also equip SLd(R) n (Rd)r with the multiplication rule

(9) (A, a1, . . . , ar)(B, b1, . . . , br) = (AB, a1 + Ab1, . . . , ar + Abr),

and consider the space of periodic configurations in d-dimensional space
Ĝ = SLd(R) n (Rd)r/SLd(Z) n (Zd)r.

The action of gt := (gt, 0, . . . , 0) on Ĝ is partially hyperbolic and
unstable manifolds are orbits of (Λα, x̄1, . . . , x̄r) where α, x̄j ∈ Rd−1.
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We will denote these unstable manifolds by n+(α) or n+(α, x̄) or
n+(α, x̄1, . . . , x̄r). Note also that n+(α, x̄) or n+(α, x̄1, . . . , x̄r) for fixed
x̄, x̄1, . . . , x̄r form positive codimension manifolds inside the full unsta-
ble leaves of the action of gt.

We will often use the uniform distribution of the images of unstable
manifolds for partially hyperbolic flows (see e.g. [33]) to assert that
gt(Λα) or gt(Λα, x̄) or gt(Λα, x̄1, . . . , x̄r) becomes uniformly distributed
in the corresponding lattice spaces according to their Haar measures
as α, x̄, x̄1, . . . , x̄r are independent and distributed according to any
absolutely continuous measure on Rd−1. In fact, if the original measure
has smooth density, then one has exponential estimate for the rate
of equidistribution (cf. [66]). The explicit decay estimates play an
important role in proving limit theorems by martingale methods. For
example, such estimates are helpful in proving Theorem 9 in Section 3
and Theorems 26, 27 in Section 7.

Below we shall also encounter a more delicate situation when all or
some of x̄, x̄j are fixed so we have to deal with positive codimension
manifolds inside the full unstable horocycles. In this case one has
to use Ratner classification theory for unipotent actions. Examples of
unipotent actions are n+(·) or n+(·, x̄) or n+(α, ·). The computations of
the limiting distribution of the translates of unipotent orbits proceeds
in two steps (cf. [92]). For several results described in the previous
sections we need the limit distribution of gtΛαw inside X = G/Γ where

X can be any of the sets G, Ḡ, Ĝ described above and w ∈ G. In fact,
the identity gtΛαw = w(w−1gtΛαw) allows us to assume that w = id at
the cost of replacing the action of SLd(R) by right multiplication by a
twisted action φw(M)u = w−1Mwu. So we are interested in φw(gtΛα)Id
for some fixed w ∈ X. The first step in the analysis is to use Ratner
Orbit Closure Theorem [109] to find a closed connected subgroup, that

depends on w, H ⊂ G such that φw(SLd(R))Γ = HΓ and H ∩ Γ is a
lattice in H. The second step is to use Ratner Measure Classification
Theorem [108] to conclude that the sets in question are uniformly
distributed in HΓ/Γ. Namely, we have the following result (see [115,
Theorem 1.4] or [92, Theorem 18.1]).

Theorem 15. (a) For any bounded piecewise continuous functions
f : X → R and h : Rd−1 → R the following holds

(10) lim
t→∞

∫
Rd−1

f (ϕw(gtΛα))h(α)dα =

∫
X

fdµH

∫
Rd−1

h(α)dα

where µH denotes the Haar measure on HΓ/Γ.
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(b) In particular, if φ(SLd(R))Γ is dense in X then

lim
t→∞

∫
Rd−1

f (ϕw(gtΛα))h(α)dα =

∫
X

fdµG

∫
Rd−1

h(α)dα

where µG denotes the Haar measure on X.

To apply this Theorem one needs to compute H = H(w). Here we
provide an example of such computation based on [92, Sections 17-19]
or [93, Sections 2 and 4] and [32, Section 3].

Proposition 1. Suppose that d = 2 and w = Λ(0, x̄1 . . . x̄r).
(a) If the vector (x1, . . . , xr) is irrational then H(w) = SL2(R) n

(R2)r.
(b) If the vector (x1, . . . , xk) is irrational and for j > k

xj = qj +
k∑
i=1

qijxj

where qj and qij are rational numbers then H(w) is isomorphic to
SL2(R) n (R2)k.

Proof. (a) Denote

(M, 0) =

(
M,

(
0
0

)
, . . . ,

(
0
0

))
, Ux = (I, x̄) =

((
1 0
0 1

)
, x̄1, . . . , x̄r

)
.

We need to show that U−1
x (M, 0)Ux(γ, n) is dense in SLd(R) n (R2)r

as M , γ, n = (n1, . . . , nr) vary in SL(2,R), SL(2,Z), and (Z2)r respec-
tively. It is of course sufficient to prove the density of

(M, 0)Ux(γ, n) = (Mγ,Mx̄1 +Mn1, . . . ,Mx̄r +Mnr)

which in turn follows from the density in (R2)r of(
γ−1(x̄1 + n1), . . . , γ−1(x̄r + nr)

)
.

To prove this last claim fix ε > 0 and any v ∈ (R2)r. Let z =
(x1, . . . , xr). Since {1, x1 . . . xr} are linearly independent over Q, the
Tz orbit of 0 is dense in Tr and hence there exists a ∈ N and a vector
m1 ∈ Zr such that

|axi − vi,1 −mi,1| < ε.

Since the Taz orbit of z is dense in Tr there exists c ∈ N such that

c ≡ 1 mod a and |cxi − vi,2 −mi,2| < ε.

Since a ∧ c = 1 we can find b, d ∈ Z such that ad − bc = 1. Let

γ−1 =

(
a b
c d

)
and ni = −γmi so that

∣∣∣(γ−1(x̄i + ni))j − vi,j
∣∣∣ < ε
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for every i = 1, . . . , r and j = 1, 2. This finishes the proof of density
completing the proof of part (a).

(b) Suppose first that qj and qij are integers. In this case a direct
inspection shows that φ(SL2(R)) is contained in the orbit of H =
SL2(R)× V where

V = {(z1, z2, . . . , zr) : zj = qj +
∑
i

qijzi}

and that the orbit of H is closed. Hence H(w) ⊂ H. To prove the
opposite inclusion it suffices to show that dim(H) = dim(H). To this
end we note that since the action of SL2(R) is a skew product, H
projects to SL2(R). On the other hand the argument of part (a) shows
that the closure of φ(SL2(R)) contains the elements of the form (Id, v)
with v ∈ V. This proves the result in case qi and qij are integers.

In the general case where qj =
pj
Q

and qij =
pij
Q

where Q, pj and pij
are integers, the foregoing argument shows that

φw(SL2(R))(SL2(Z) n (Z/Q)2r) = H(SL2(Z) n (Z/Q)2r).

Accordingly, the orbit of Id is contained in a finite union of H-orbits
and intersects one of these orbits by the set of measure at least (1/Q)r.
Again the dimensional considerations imply that H(w) = H. �

5.2. Poisson processes. Random (quasi)-lattices provide impor-
tant examples of random point processes in the Euclidean space having
a large symmetry group. This high symmetry explains why they ap-
pear as limit processes in several limit theorems (see discussion in [92,
Section 20]). Another point process with large symmetry group is a
Poisson process. Here we recall some facts about the Poisson processes
referring the reader to [92, Section 11] or [65] for more details.

Recall that a random variable N has Poisson distribution with pa-
rameter λ if P(N = k) = e−λ λk

k!
. Now an easy combinatorics shows the

following facts
(I) If N1, N2 . . . Nm are independent random variables and Nj have

Poisson distribution with parameters λj, then N =
∑m

j=1Nj has Pois-

son distribution with parameter
∑m

j=1 λj.

(II) Conversely, take N points distributed according to a Poisson
distribution with parameter λ and color each point independently with
one of m colors where color j is chosen with probability pj. Let Nj be
the number of points of color j. Then Nj are independent and Nj has
Poisson distribution with parameter λj = pjλ.

Now let (Ω, µ) be a measure space. By a Poisson process on this
space we mean a random point process on X such that if Ω1,Ω2 . . .Ωm
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are disjoint sets and Nj is the number of points in Ωj then Nj are
independent Poisson random variables with parameters µ(Ωj) (note
that this definition is consistent due to (I)). We will write {xj} ∼
P((X,µ)) to indicate that {xj} is a Poisson process with parameters
(X,µ). If (X,µ) = (R, cLeb) we shall say that X is a Poisson process
with intensity c. The following properties of the Poisson process are
straightforward consequences of (I) and (II) above.

Proposition 2. (a) If {x′j} ∼ P(X,µ′) and {x′′j} ∼ P(X,µ′′) are
independent then {x′j} ∪ {x′′j} ∼ P(X,µ′ + µ′′).

(b) If {xj} ∼ P(X,µ) and f : X → Y is a measurable map then
{f(xj)} ∼ P(Y, f−1µ).

(c) Let X = Y ×Z, µ = ν×λ where λ is a probability measure on Z.
Then {(yj, zj)} ∼ P(X,µ) iff {yj} ∼ P(Y, ν) and zj are random vari-
ables independent from {yj} and each other and distributed according
to λ.

Next recall [40, Chapter XVII] that the Cauchy distribution is
unique (up to scaling) symmetric distribution such that if Z,Z ′ and Z ′′

are independent random variables with that distribution then Z ′ + Z ′′

has the same distribution as 2Z. We have the following representation
of the Cauchy distribution.

Proposition 3. (a) If {xj} is a Poisson process with constant
intensity then

∑
j

1
xj

has Cauchy distribution. (the sum is understood

in the sense of principle value).
(b) If {xj} is a Poisson distribution with constant intensity and ξj

are random variables with finite expectation independent from {xj} and
from each other then

(11)
∑
j

ξj
xj

has Cauchy distribution.

To see part (a) let {x′j}, {x′′j} and {xj} are independent Poisson
processes with intensity c. Then∑ 1

x′j
+
∑ 1

x′′j
=

∑
y∈{x′j}∪{x′′j }

1

y

and by Proposition 2 (a) and (b) both {x′j}∪{x′′j} and {xj
2
} are Poisson

processes with intensity 2c.
To see part (b) note that by Proposition 2(b) and (c), {xj

ξj
} is a

Poisson process with constant intensity.
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6. Ideas of the Proofs

We are now ready to explain some of the ideas behind the proofs of
the Theorems of Sections 2, 3 and 4 following [28, 29]. Applications to
similar techniques to the related problems could be found for example
in [12, 32, 33, 66, 67, 90, 91]. We shall see later that the same
approach can be used to prove several other limit theorems.

6.1. The Poisson regime. Theorem 13 is a consequence of the
following more general result.

Theorem 16. ([88]) (a) If (α, x) is uniformly distributed on Td×Td
then N1/d{x+ nα} converges in distribution to

{X ∈ Rd such that for some Y ∈ [0, 1] the point (X, Y ) ∈ L}
where L ∈ Rd+1 is a random affine lattice.

(b) The same result holds if x is a fixed irrational vector and α is
uniformly distributed on Td.

(c) If α is uniformly distributed on Td then N1/d{nα} converges in
distribution to

{X ∈ Rd such that for some Y ∈ [0, 1] the point (X, Y ) ∈ L}
where L ∈ Rd+1 is a random lattice centered at 0.

Here the convergence in, say part (a), means the following. Take a
collection of sets Ω1,Ω2 . . .Ωr ⊂ Rd whose boundary has zero measure
and let Nj(α, x,N) = Card(0 ≤ n ≤ N − 1 : N1/d{x+nα} ∈ Ωj. Then
for each l1 . . . lm

(12) lim
N→∞

P(N1(α, x,N) = l1, . . . ,Nr(α, x,N) = lr) =

µG(L : Card(L ∩ (Ω1 × [0, 1])) = l1, . . . ,Card(L ∩ (Ωr × [0, 1])) = lr)

where µG is the Haar measure on G = SLd(R), or G = SLd(R) n Rd

respectively.
The sets appearing in Theorem 16 are called cut-and-project

sets. We refer the reader to Section 10.2 of the present paper as well
as to [92, Section 16] for more discussion of these objects.

A variation on Theorem 16 is the following.
Let G = SL2(R) n (R2)r equipped with the multiplication rule

defined in Section 5.1 and consider X = G/Γ, Γ = SL2(Z) n (Z2)r.

Theorem 17. Assume (α, z1 . . . zr) ∈ [0, 1]r+1. For any collection
of sets Ωi,j ⊂ Rd, i = 1, . . . , r and j = 1, . . . ,M whose boundary has
zero measure let

Ni,j(α,N) = Card (0 ≤ n ≤ N − 1 : N{zi + nα} ∈ Ωi,j) .
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(a) If (α, z1 . . . zr) are uniformly distributed on [0, 1]r+1 or if α is
uniformly distributed on [0, 1] and (z1, . . . , zr) is a fixed irrational vector
then for each li,j

(13) lim
N→∞

P (Ni,j(α,N) = li,j,∀i, j)

= µG ((L, a1, . . . , ar) ∈ G : Card(L+ ai ∩ (Ωi,j × [0, 1])) = li,j,∀i, j)

where we use the notation P for Haar measure on T (in the case of
fixed vector (z1, . . . , zr)) as well as on Tr+1 (in the case of random
vector (z1, . . . , zr)), and µG is the Haar measure on.

(b) For arbitrary (z1, . . . , zr) there is a subgroup H ⊂ G such that
for each li,j

(14) lim
N→∞

P (Ni,j(α,N) = li,j, ∀i, j)

= µH ((L, a1, . . . , ar) ∈ G : Card(L+ ai ∩ (Ωi,j × [0, 1])) = li,j,∀i, j)

where µH denotes the Haar measure on the orbit of H.

Proof of Theorem 16. (a) We provide a sketch of proof refer-
ring the reader to [92, Section 13] for more details.

Fix a collection of sets Ω1,Ω2 . . .Ωr ⊂ Rd and l1, . . . , lr ∈ N. We
want to prove (12).

Consider the following functions on the space of affine lattices Ḡ =
(SLd(R) nRd)/(SLd(Z) n Zd)

fj(L) =
∑
e∈L

χΩj×[0,1](e)

and let A = {L : fj(L) = lj}. By definition, the right hand side of (12)
is µḠ(L : L ∈ A).

On the other hand, the Dani correspondence principle states that

(15) N1(α, x,N) = l1, . . . ,Nr(α, x,N) = lr iff glnN(ΛαZd+1 + x̄) ∈ A

where gt is the diagonal action (et/d, . . . , et/d, e−t) and x̄ = (x1, . . . , xd, 0)
are defined as in Section 5.1. To see this, fix j and suppose that
{x+ nα} ∈ N−1/dΩj for some n ∈ [0, N ]. Then

{x+ nα} = (x1 + nα1 +m1(n), . . . , xd + nαd +md(n))

with mi(n) uniquely defined such thta xi+nαi+mi ∈ (−1/2, 1/2], and
the vector v = (m1(n), . . . ,md(n), n) is such that χΩj×[0,1]

(
glnN(ΛαZd+1 + x̄)v

)
=

1. The converse is similarly true, namely that any vector that counts
in the right hand side of (15) corresponds uniquely to an n that counts
in the left hand side visits.
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Now (15), and thus (12), follow if we prove that

(16) lim
N→∞

P
(
(α, x) ∈ Td × Td : glnN(ΛαZd+1 + x̄) ∈ A

)
=

µG(L ∈ Ḡ : L ∈ A)

Finally, (16) holds due to the uniform distribution of the images of
unstable manifolds n+(α, x) for partially hyperbolic flows.

(b) Following the same arguments as above, we see that in order
to prove Theorem 16(b) we need to show that (glnN , 0).(Λα, x̄) be-
comes equidisitributed with respect to Haar measure on G = (SLd(R)n
Rd)/(SLd(Z)nZd) if α is random and x is a fixed irrational vector. This
can be derived from Theorem 15(b) using a generalization of Proposi-
tion 1(a).

The argument for part (c) is the same as in part (a) but we use the
space of lattices rather than the space of affine lattices. �

Proof of Theorem 17. As in the proof of Theorem 16 we use
Dani’s correspondence principle to identify the left hand side in (13)
with

P (Card((glnNΛα + glnN z̄i) ∩ (Ωi,j × [0, 1])) = li,j,∀i, j)

where z̄i =

(
zi
0

)
.

Now (13) follows if we have that (glnN , 0).(Λα, z̄1, . . . , z̄r)) is dis-
tributed according to the Haar measure inX = G/Γ withG = SL2(R)n
(R2)r and Γ = SL2(Z) n (Z2)r. But this last statement follows from
Theorem 15(b) and Proposition 1(a).

Likewise (14) follows from Theorem 15(a). �

6.2. Application of the Poisson regime theorems to the er-
godic sums of smooth functions with singularities. The micro-
scopic or Poisson regime theorems are useful to treat the ergodic sums
of smooth functions with singularities since the main contribution to
these sums come from the visits to small neighborhoods of the singu-
larity.

Proof of Theorem 3. Due to Corollary 1 we may assume that
Ã = 0.

Let R be a large number and denote by S ′N the sum of terms with
|x+nα−x0| > R/N and by S ′′N the sum of terms with |x+nα−x0| <
R/N. Then

E(|S ′N/Na|) ≤ C

Na
E(|ξ|−aχ|ξ|>R/N) = O(R1−a).
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On the other hand, by Theorem 16(a) if (α, x) is random
S ′′N
N2

converges

as N →∞ to ∑
(X,Y )∈L:Y ∈[0,1],|X|<R

c−χX<0 + c+χX>0

|X|a
,

where L is a random affine lattice in R2. Letting R→∞ we get

SN
N2
⇒

∑
(X,Y )∈L:Y ∈[0,1]

c−χX<0 + c+χX>0

|X|a
.

The case of fixed irrational x is dealt with similarly using Theorem
16(b). �

Sketch of proof of Theorem 5. Consider first the case when
the highest pole has order m > 1. Then the argument given in the proof
of Theorem 3 shows that for large R, AN/N

m can be well approximated
by

(17)
AN
Nm
∼

r∑
j=1

∑
|x+nα−xj |<R/N

cj
(N(x+ nα− xj))m

where x1 . . . xr are all poles of order m and c1 . . . cr are the correspond-
ing Laurent coefficients.

We use Theorem 17 to analyze this sum. Namely, let G = SL2(R)n
(R2)r with the multiplication rule defined in Section 5.1 and consider
X = G/Γ, Γ = SL2(Z) n (Z2)r. Consider the functions Φ : G/Γ → R
given by

(18) ΦR(A, a1, . . . ar) =
r∑
j=1

∑
e∈AZ2+aj

cj
x(e)m

χ[−R,R]×[0,1](e)

which as R→∞ will be distributed as

(19) Φ(A, a1 . . . ar) =
r∑
j=1

∑
e∈AZ2+aj

cj
x(e)m

χ[0,1](y(e)).

Now Theorem 5 follows from Theorem 17. Namely part (a) of Theo-
rem 5 follows from Theorem 17(a). To get part (c) we let zj = x− xj,
we observe that for almost every x the vector (z1, . . . , zr) is irrational.
Hence Theorem 17 applies and gives us that (17) when α ∈ T is ran-
dom has the same distribution as (18) as (A, a1 . . . ar) is random in G.
Finally Theorem 5(b) follows from Theorem 17 (b).

The proof in case when all poles are simple is the same except that
the proof that AN/N is well approximated by (17) is more involved
since one cannot use L1 bounds. We refer to [117] for more details. �
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6.3. Limit theorems for discrepancy. The proofs of Theorems
10–12 use a similar strategy as Theorems 3 and 5 of first localizing
the important terms and then reducing their contribution to lattice
counting problems. However the analysis in that case is more compli-
cated, in particular, because the argument is carried over in the set of
frequencies of the Fourier series of the discrepancy rather than in the
phase space.

Let us describe the main steps in the proof of Theorem 10. Consider
first the case where Ω is centrally symmetric. We start with Fourier
series of the discrepancy

DN(Ω, α, x) =

r(d−1)/2
∑

k∈Zd−0

ck(r)
cos(2π(k, x) + π(N − 1)(k, α)) sin(πN(k, α))

sin(π(k, α))

where r(d−1)/2ck(r) are Fourier coefficients of χrΩ which have the fol-
lowing asymptotics for large k (see [50])

ck(r) ≈
1

π|k|(d+1)/2
K−1/2(k/|k|) sin

(
2π

(
rP (k)− d− 1

8

))
.

Here K(ξ) is the Gaussian curvature of ∂Ω at the point where the
normal to ∂Ω is equal to ξ and P (t) = supx∈Ω(x, t).

The proof consists of three steps. First, using elementary manipu-
lations with Fourier series one shows that the main contribution to the
discrepancy comes from k satisfying

(20) εN1/d < |k| < ε−1N1/d

(21) k(d+1)/2|{(k, α)}| < 1

εN (d−1)/2d
.

To understand the above conditions note that (20) and (21) imply

that {(k, α)} is of order 1/N so the sum
∑N−1

n=0 e
i2π(k,(x+nα)) is of order

N, that is, it is as large as possible. Next the number of terms with
|k| � N1/d is too small (much smaller than N) so for typical α, we have
that |{k, α)}| � 1/N for such k ensuring the cancelations in ergodic
sums. For the higher modes k � N1/d, using L2 norms and the decay
of ck one sees that their contribution is negligible

The second step consists in showing using the same argument as
in the proof of Theorem 16 that if (α, x) is uniformly distributed on
Td × Td then the distribution of(

k

N1/d
, (k, α)|k|(d+1)/2N (d−1)/2d

)
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converge as N →∞ to the distribution of

(X(e), Z(e)|X(e)|(d+1)/2)e∈L

where L is a random lattice in Rd+1 centered at 0.
Finally the last step in the proof of Theorem 10 is to show that if we

take prime k satisfying (20) and (21) then the phases (k, x), N(k, α)
and rP (k) are asymptotically independent of each other and of the
numerators. For (k, x) and rP (k) the independence comes from the
fact that (20) and (21) do not involve x or r, while N(k, α) has wide
oscillation due to the large prefactor N.

The argument for non-symmetric bodies is similar except that the
asymptotics of their Fourier coefficients is slightly more complicated.

The foregoing discussion explains the form of the limit distribution
which we now present. LetM2,d be the space of quadruples (L, θ, b, b′)
where L ∈ X, the space of lattices in Rd+1, and (θ, b, b′) are elements
of TX satisfying the conditions

θe1+e2 = θe1 + θe2 , bme = mbe and b′me = mb′e.

LetMd be the subset of M2,d defined by the condition b = b′. Consider
the following function on M2,d

(22) LΩ(L, θ, b, b′) =
1

π2

∑
e∈L

κ(e, θ, b, b′)
sin(πZ(e))

|X(e)| d+1
2 Z(e)

with

(23) κ(e, θ, b, b′) = K−
1
2 (X(e)/|X(e)|) sin(2π(be + θe − (d− 1)/8))

+K−
1
2 (−X(e)/|X(e)|) sin(2π(b′e − θe − (d− 1)/8)).

It is shown in [28] that this sum converges almost everywhere onM2,d

and Md. Now the limit distribution in Theorem 10 can be described
as follows

Theorem 18. (a) If Ω is symmetric then
DN(Ω, r, α, x)

N (d−1)/2dr(d−1)/2
con-

verges to LΩ(L, θ, b, b′) where LΩ(L, θ, b, b′) is uniformly distributed on
Md.

(b) If Ω is non-symmetric then
DN(Ω, r, α, x)

N (d−1)/2dr(d−1)/2
converges to LΩ(L, θ, b, b′)

where LΩ(L, θ, b, b′) is uniformly distributed on M2,d.

Question 21. Study the properties of the limiting distribution in
Theorem 18, in particular its tail behavior.

The next question is inspired by Theorem 49 from Section 10.
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Question 22. Consider the case where Ω is the standard ball. Thus
in (23) K ≡ 1. Study the limit distribution of L when the dimension
of the torus d→∞.

Next we describe the idea of the proof of Theorem 12. Note that
(11) looks similar to (22). The main ingredient in the proof of Theorem
12 involves a result on the distribution of small divisors of multiplica-
tive form Π|ki|‖(k, α)‖. Namely, a harmonic analysis of the discrep-
ancy’s Fourier series related to boxes allows to bound the frequencies
that have essential contributions to the discrepancy and show that they
must be resonant with α. The main step is then to establish a Pois-
son limit theorem for the distribution of small denominators and the
corresponding numerators. With the notation introduced before the
statement of Theorem 12 let k̄i = ai,1k1 + · · ·+ ai,dkd. Then we have

Theorem 19. ([29]) Let ξ ∈ X be distributed according to the
normalized Lebesgue measure λ. Then as N →∞ the point process{(

(lnN)dΠik̄i‖(k, α)‖, N(k, α)mod(2), {k̄1u1}, . . . {k̄dud},
)}

k∈Z(ξ,N)

where

Z(ξ,N) =
{
k ∈ Zd : |k̄i| ≥ 1, |Πik̄i| < N, k̄1 > 0,

|Πik̄i|‖(k, α)‖ ≤ 1

ε(lnN)d
,

∃m ∈ Z such that k1 ∧ . . . ∧ kd ∧m = 1 and ‖(k, α)‖ = (k, α) +m}

converges to a Poisson process on R×R/(2Z)× (R/Z)d with intensity
2d−1c1/d!.

Comparing this result with the proof of Theorem 10 discussed above
we see that Theorem 19 comprises analogies of both step 2 and 3 in
the former proof. Namely, it shows both that the small denominators
contributing most to the discrepancy have asymptotically Poisson dis-
tribution and that the numerators are asymptotically independent of
the denominators (cf. Proposition 2(c)).

We note that Theorem 19 is interesting in its own right since it
describes the number of solutions to Diophantine inequalities

Πi|k̄i|‖(k, α)‖ < c

lndN
, |k̄i| > 1,

∏
i

|k̄i| < N.

Question 23. What happens if in Theorem 19 lndN is replaced by
lnaN with a ∈ (0, d)?
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Question 24. Is Theorem 19 still valid if the distribution of ξ
is concentrated on a submanifold of X? For example, one can take
α = (s, s2).

A special case of Question 24 is when the matrix (ai,j) is fixed equal
to Identity. This case is directly related to Question 16(a).

The proof of Theorem 19 proceeds by martingale approach (see
[26, 27]) which requires good mixing properties in the future condi-
tioned to the past. In the present setting, to apply this method it
suffices to prove that most orbits of certain unipotent subgroups are
equidisitributed at a polynomial rate. Under the conditions of Theo-
rem 19 one can assume (after an easy reduction) that the initial point
has smooth density with respect to Haar measure. Then the required
equidistribution follows easily form polynomial mixing of the unipotent
flows. In the setting of Question 24 (as well as Question 53 in Section
10) the initial point is chosen from a positive codimension submanifold
so one cannot use the mixing argument. The problem of estimating the
rate of equidistribution for unipotent orbits starting from submanifolds
interpolates between the problem of taking a random initial condition
with smooth density which is solved and the problem of taking fixed
initial condition which seems very hard.

7. Shrinking targets

Another classical result in probability theory is the Borel-Cantelli
Lemma which says that if Aj are independent sets and

∑
j P(Aj) =∞

then P-almost every point belongs to infinitely many sets. A yet
stronger conclusion is given by the strong Borel-Cantell Lemma claim-
ing that the number of Aj which happen up to time N is asymptotic

to
∑N

j=1 P(Aj). In the context of ergodic dynamical systems (T,X, µ),
the law of large numbers is reflected in the Birkhoff theorem of almost
sure converge in average of the ergodic means associated to a measur-
able observable, for example the characteristic function of a measurable
set A ⊂ X. In a similar fashion one can study the so called dynam-
ical Borel-Cantelli properties of the system (X,T, µ) by considering
instead of a fixed stet A a sequence of ”target” sets Aj ∈ X such that∑
µ(Aj) = ∞. We then say that the dynamical Borel-Cantelli prop-

erty is satisfied by (Aj) if for almost every x, T j(x) belongs to Aj for
infinitely many j.

In the context of a dynamical systems (T,X, µ) on a metric space
X it is natural to assume that the sets in question have nice geometric
structure, since it is always possible for any dynamical system (with a
non atomic invariant measure) to construct sets with divergent sum of
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measure that are missed after a certain iterate by the orbits of almost
every point [21, Proposition 1.6]. The simplest assumption is that
the sets be balls. The dynamical Borel-Cantelli property for balls is
a common feature for deterministic systems displaying hyperbolicity
features (see [51, 105, 27] and references therein).

Due to strong correlations among iterates of a toral translation
the dynamical Borel-Cantelli properties are more delicate in the quasi-
periodic context.

7.1. Dynamical Borel-Cantelli lemmas for translations. For
toral translations one needs also to assume that the sets are nested since
otherwise one can take Aj ⊂ (A0 + jα) for some fixed set A0 ensuring
that the points from the compliment of A0 do not visit any Aj at time
j. This motivates the following definition (see [51, 21, 38]).

Given T : (X,µ) → (X,µ) let VN(x, y) =
∑N

n=1 χB(y,rn)(T
nx), We

say that T has the shrinking target property (STP) if for any y, {rn}
such that

∑
n µ(B(y, rn)) =∞, it holds that VN(x, y)→∞ for almost

all x, i.e. the targets sequence (B(y, rn)) satisfies the Borel-Cantelli
property for T . We say that T has the monotone shrinking target
property (MSTP) if for any y, {rn} such that

∑
n µ(B(rn)) =∞ and

rn is non-increasing VN(x, y)→∞ for almost all x.
In the case of translations, we can always assume without loss of

generality that y = 0 (replace x by x − y). We then use the notation
VN(x) for VN(x, y). We also use the notation B(r) for the ball B(0, r).
Another interesting choice is to take y = x in which case we study
the rate of return rather than the rate of approach to 0. Note that
if VN(x, x) does not depend on x and so the number of close returns

depends only on α. We shall write UN(α) =
∑N−1

n=0 χB(rn)(T
n0).

The following is a straightforward consequence of the fact that toral
translations are isometries.

Theorem 20. ([38]) Toral translations do not have STP.

It turns out that the following Diophantine condition is relevant to
this problem. Let

(24) D∗(σ) = {α : ∀k ∈ Z− 0, max
i∈[1,d]

‖kαi‖ ≥ C|k|−(1+σ)/d}.

Theorem 21. ([80]) A toral translation Tα has the MSTP iff α ∈
D∗(0).

A simple proof of Theorem 21 can be found in [38]. Recall that
D∗(0)has zero Lebesgue measure. Hence, the latter result shows that
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one has to further restrict the targets if one wants that typical trans-
lations display the dynamical Borel-Cantelli property relative to these
targets.

One possible restriction on the targets is to impose a certain growth
rate on the sum of their volumes. This actually allows to further dis-
tinguish among distinct Diophantine classes as it is shown in the fol-
lowing result. We say that T has s-(M)STP if for any {rn} such that∑

n r
ds
n = ∞ (and rn is non-increasing) VN(x) → ∞ for almost all x.

We then have the following.

Theorem 22. ([121])
a) If α 6∈ D∗(sd − d), then the toral translation Tα does not have

the s-MSTP.
b) A circle rotation Rα has the s-MSTP iff α ∈ D∗(s− 1).

Question 25. Is this true that the toral translation Tα has the
s-MSTP iff α ∈ D∗(sd− d)?

Another possible direction is to study specific sequences, asking for
example that rn = cn−γ, or that nrdn be decreasing, in which case the
sequence rn is coined a Khinchin sequence. The case rn = cn−1/d in
dimension d is very particular, but important. Indeed a vector α ∈ Td
is said to be badly approximable if for some c > 0, the sequence
limN→∞ UN(α, {cn−1/d}) < ∞. It is known that the set of badly ap-
proximable vectors has zero measure. By contrast, vectors α such that
limN→∞ UN(α, {cn−(1/d+ε)}) =∞ for some ε > 0 are called very well
approximated, or VWA. By the obvious direction of the Borel Can-
telli lemma (cf. [19, Chap. VII]), it is clear that almost every α ∈ Td
is not very well approximated. The latter facts are particular cases of a
more general result, the Khintchine–Groshev theorem on Diophantine
approximation which gives a very detailed description of the sequences
such that UN(x, {rn}) diverges for almost all α. We refer the reader to
[13] for a nice discussion of that theorem and its extensions, and to
Section 10.1 below.

Khinchin sequences also display BC property much more likely than
general sequences. For example, compare Theorem 23(b) below with
Theorem 21 which shows that the set of vectors having mSTP has zero
measure.

If a shrinking target property holds it is natural to investigate the
asymptotics of the number of target hits. This makes the following
definition natural. We say that a given sequence of targets {An} is
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sBC or strong Borel Cantelli for (T,X, µ) if for almost every x

lim
N→∞

∑N
n=1 χAn(T nx)∑N
n=1 µ(An)

= 1.

Theorem 23. [20] (a) For every α such that its convergents satisfy

an ≤ Cn
7
6 the sequence {B( c

n
)} is sBC for Rα.

(b) For almost every α ∈ T, any Khinchin sequence is sBC for Rα.
(c) For any α ∈ D(1), and any decreasing sequence {rn} such that∑
rn =∞, {B(rn)} is sBC for Rα.

Observe that the condition in (a) has full measure. On the other
hand, it is not hard to see that if an(α) ∼ n2+ε for every n then the
sequence (B( 1

n
)) does not have the sBC for Rα. Indeed, if

x ∈
[
k

qn
− 1

2nqn
,
k

qn
+

1

2nqn

]
then since ‖qnα‖ ≤ 1

qn+1
≤ 2

n2+εqn
and ln qn ≤ Cn lnn

n1+ε/2qn∑
l=qn

χB( 1
n

)(x+ lα) ≥ n1+ε/2 �
n1+ε/2qn∑
l=1

1

n
.

But it is easy to see that a.e. x belongs to infinitely many intervals of
the form [ k

qn
− 1

2nqn
, k
qn

+ 1
2nqn

].

In higher dimensions, it was proved in [114] that

Theorem 24. If
∑

n r
d
n =∞ then for almost every vector α ∈ Td,

the sequence (B(rn)) is sBC for the translation Tα

7.2. On the distribution of hits. Theorems 23 and 24 motivate
the study of the error terms

∆N(c, α, x) = VN(α, x)−
N∑
n=1

Vol(Brn) and ∆̄N(c, α) = UN(α)−
N∑
n=1

Vol(Brn).

One can for example try to give lower and upper asymptotic bounds
on the growth of ∆N as a function of the arithmetic properties of α
in the spirit of Kintchine-Beck Theorem 6 and Questions 6–8. Here
we will be interested in the distribution of ∆N(c, α, x) after adequate
normalization when α or x or (α, x) are random.

Theorem 25. ([9, 89]) Let rn = cn−1/d. Suppose that x is uni-
formly distributed on Td. For any c > 0, if α ∈ D∗(0), there is a

constant K such that all limit points of
∆N(c, α, x)√

lnN
are N(σ2) with

σ2 ≤ K.
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In the case of random (α, x) we have

Theorem 26. Let rn = cn−1/d. ([30]) There is Σ(c, d) > 0 such that

if (α, x) is uniformly distributed on Td×Td then
∆N(c, α, x)√

lnN
converges

to N(Σ(c, d)).

There is an analogous statement for the return times.

Theorem 27. ([104, 111, 30]) Let rn = cn−1/d. There is Σ̄(c, d) >

0 such that if α is uniformly distributed on Td then
∆̄N(c, α)√

bN
converges

in distribution to N(Σ̄(c, d)) where

bN =

{
lnN ln lnN if d = 1

lnN if d ≥ 2.

The case d = 1 was obtained in [104] (Theorem 3.1.1. page 44, see
also [111]), based on the metric theory of the continued fractions. In
fact, one can handle more general sequences. Namely, let φ(k) satisfy
the following conditions

(i) φ(k)↘ 0, but
∑

k φ(k) = +∞,
(ii) There exists 0 < δ < 1/2 such that

∑n
k=1

φ(k)
kδ
≤ C

√∑n
k=1 φ(k)

(iii)
∑n

k=1 φ
2(k) ≤ C

√∑n
k=1 φ(k).

Theorem 28. ([44]) If rn = φ(lnn)
n

and α is uniformly distributed

on T then
∆̄N(c, α)√
F (n) lnF (n)

converges in distribution to N(Σ(c)) where

F (n) =
∑n

k=1
φ(ln k)
k

.

The higher dimensional case is obtained via ergodic theory of ho-
mogeneous flows and martingale methods in [30].

Question 26. Study the limiting distribution of UN and VN in case
rn = c

nγ
with γ < 1

d
.

Question 27. Do Theorems 24, 26 and 27 hold when the random
vector α is taken from a proper submanifold of Td, for example α =
(s, s2, . . . , sd).

One motivation for this question comes from Diophantine approxi-
mation on manifolds (see [13] and references wherein), another is mul-
tidimensional extension of Kesten Theorem (cf. Question 24).
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7.3. Sketches of proofs. First we sketch a proof of Theorem 24
in case rn = cn−1/d. Consider the number Nm(α, x) of solutions to

x+ nα ∈ B(0, cn−1/d), em < n < em+1.

The argument used to prove Theorem 16 shows that

Nm(α, x) = f(gm(ΛαZd+1 + x))

where f is the function on the space of affine lattices given by

f(L) =
∑
v∈L

χB(0,c)×[1,e](v).

Thus

(25)
lnN∑
m=1

Nm(α, x) ∼
lnN∑
m=1

f(gm(ΛαZd+1 + x))

and Theorem 24 for rn = cn−1/d reduces to the study of ergodic sums
(25) under the assumption that the initial condition has a density on
n+(α, x). In fact, a standard argument allows to reduce the problem to
the case when the initial condition has density on the space of lattices.
Namely, it is not difficult to check that the ergodic sums of f do not
change much if we move in the stable or neutral direction in the space
of lattices. After this reduction, the sBC property follows from the
Ergodic Theorem.

The relation (25) also allows to reduce Theorem 26 to a Central
Limit Theorem for ergodic sums of gm which can be proven, for exam-
ple, by a martingale argument (see [81]. We refer the reader to [26]
for a nice introduction to the martingale approach to limit theorems
for dynamical systems.)

The proof of Theorem 27 is similar but one needs to work with
lattices centered at 0 rather than affine lattices.

In particular, the non-standard normalization in case d = 1 is ex-
plained by the fact that f in this case is not in L2 and the main con-
tribution comes from the region where f is large (in fact, the analysis
is similar to [46, Section 4]).

8. Skew products. Random walks.

8.1. Basic properties. The properties of ergodic sums along toral
translations are crucial to the study of some classes of dynamical sys-
tems, such as skew products or special flows. In this section we consider
the skew products. Special flows are the subject of Section 9.

Skew products above Tα will be denoted Sα,A : Td×Tr → Td×Tr
They are given by Sα,A(x, y) = (x+ α, y + A(x) mod 1). Cylindrical



32 DMITRY DOLGOPYAT AND BASSAM FAYAD

cascades above Tα will be denoted Wα,A : Td × Rr → Td × Rr. They
are given by Wα,A(x, y) = (x+ α, y + A(x)). Note that

WN
α,A(x, y) = (x+Nα, y + AN(x))

(the same formula holds for Sα,A but the second coordinate has to be
taken mod 1). If A takes integer values then Wα,A preserves Td×Zr and
it is natural to restrict the dynamics to this subset. Thus cylindrical
cascades define random walks on Rr or Zr driven by the translation Tα.

If α is Diophantine and A is smooth then the so called linear coho-
mological equation similar to (3)

(26) A(x)−
∫
Td
A(u)du = −B(x+ α) +B(x)

has a smooth solution B, thus Sα,A and Wα,A are respectively smoothly
conjugated to the translations Sα,

∫
Td A

and Wα,
∫
Td A

via the conjugacy

(x, y) 7→ (x, y −B(x)).
Hence the ergodic properties of the skew products and the cascades

with smooth A are interesting to study only in the Liouville case. The
following is a convenient ergodicity criterion for skew products.

Proposition 4. [78] Sα,A is ergodic iff for any λ ∈ Zr−{0}, 〈λ,A〉
is not a measurable multiplicative coboundary above Tα, that is, iff there
does not exist λ ∈ Zr − {0} and a measurable solution ψ : Td → C to

(27) ei2π〈λ,A(x)〉 = ψ(x+ α)/ψ(x).

This ergodicity criterion can be simply derived from the observation
that the spaces Vλ of functions of the form

(28) φ(x)ei2π〈λ,y〉

are invariant under Sα,A. It then follows that the existence or nonexis-
tence of an invariant function ϕ by Sα,A is determined by the existence
or nonexistence of a solution to (27). We refer the reader to Section 9
for further discussion concerning (27).

When A is not a linear coboundary, i.e. (26) does not have a solu-
tion, it is very likely and often easy to prove that (27) does not have
a solution either. For example, it suffices to show that the sums ANn
do not concentrate on a subgroup of lower dimension for a sequence
Nn such that TNnα → Id. Indeed, if a solution to (27) exists then |ψ| is
constant by ergodicity of the base translation. Therefore by Lebesgue
Dominated Convergence Theorem

lim
n→∞

∫
Td
ei2π〈λ,ANn (x)〉dx = lim

n→∞

∫
Td
ψ(x+Nnα)/ψ(x)dx = 1
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which means that ANn(x) is concentrated near the set

{u ∈ Rr : 〈λ, u〉 ∈ Z}.

In particular it was shown, in [35], that for every Liouville trans-
lation vector α ∈ Rd, the generic smooth function A does not admit a
solution to (27) for any λ ∈ Rd − {0}. Hence the generic smooth skew
product above a Liouville translation is ergodic (cf. Section 8.3 and
Theorem 42 in Section 9).

It is known that ergodic skew products Sα,A are actually uniquely
ergodic (see [98]). On the other hand, skew products above transla-
tions are never weak mixing since they have the translation as a factor.
However, the same ideas as the ones used to prove ergodicity of the
skew products often prove that all eigenfunctions come from that fac-
tor (see [45, 42, 58, 59, 125]).

If one considers skew products on T × T with smooth increasing
functions on (0, 1) having a jump discontinuity at 0 then the cor-
responding skew product will even be mixing in the fibers, that is,
the correlations between functions that depend only on the fiber co-
ordinate tends to 0. A classical example is given by the skew shift
(x, y) 7→ (x+ α, y + x). The mixing in the fibers can be easily derived
from the invariance of Vλ defined by (28) and the fact that, by the
Ergodic Theorem, ∂An

∂x
=
(
∂A
∂x

)
n
→ +∞. A similar phenomenon can

occurs for analytic skew products that are homotopic to identity but
over higher dimensional tori Td×T 3 (x, y) 7→ (x+α, y+φ(x)), with α
and φ as in Theorem 47 below (see [37]). A fast decay of correlations
in the fibers can be responsible for the existence of non trivial invariant
distributions for these skew products similarly to what occurs for the
skew shift (x, y) 7→ (x+ α, x+ y) (see [60]).

The deviations of ergodic sums for skew products, that is the be-
havior of the sums

N−1∑
n=0

B(Snα,A(x, z))−N
∫
Td

∫
Tr
B(x, z)dxdz

is poorly understood. The only cases where some results are available
have significant extra symmetry [60, 90, 41].

8.2. Recurrence. Our next topic are cylindrical cascades. As it
was mentioned above they are sometimes called deterministic random
walks. So the first question one can ask is if the walk is recurrent
(that is, AN returns to some bounded region infinitely many times)
or transient. We will assume in this section that A has zero mean
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since otherwise Wα,A is transient by the ergodic theorem. If r = 1
this condition is also sufficient. In fact, the next result is valid for
skew products over arbitrary ergodic transformations (in fact, there is
a multidimensional version of this result, see Theorem 32).

Theorem 29. ([5]) If r = 1, A is integrable and has zero mean
then W is recurrent.

8.2.1. Recurrence and the Denjoy Koksma Property. Next we note
that if the base dimension d = 1 and A has bounded variation then W
is recurrent for all r and for all α ∈ R−Q due to the Denjoy-Koksma
inequality stating that

(29) max
x∈T
|Aqn − qn

∫
T
A(y)dy| ≤ 2V

for every denominator of the convergence of α, where V is the total
variation of A.

More generally we say that A (not necessarily of zero mean) has the
Denjoy-Koksma property (DKP) if there exist constants C, δ > 0
and a sequence nk →∞ such that

(30) P(|Ank − nk
∫
Td
A(y)dy| ≤ C) ≥ δ.

We say that A has the strong Denjoy-Koksma property (sDKP)
if (30) holds with δ = 1.

Note that if DKP holds and A has zero mean then the set of points
where lim infn→∞ |An| ≤ C has positive measure and so by ergodicity
of the base map Wα,A is recurrent.

Later, we will also see how the DKP can be very helpful in the
proof of ergodicity of the cylindrical cascades as well as weak mixing
of special flows.

The situation with DKP for translations on higher dimensional tori
is delicate. Of course it holds for almost all α and for every smooth
function by the existence of smooth solutions to the linear cohomologi-
cal equation (3). But the DKP also holds above most translations even
from a topological point of view.

Theorem 30. ([36]) There is a residual set of vectors in α ∈ Rd

such that DKP holds above Tα for every function that is of class C4.

In fact, it is non-trivial to construct rotation vectors and smooth
functions that do not have the DKP. The first construction is due to
Yoccoz and it actually provides examples of non recurrent analytic
cascades.
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Theorem 31. ([126, Appendix]) For d = 2 there exists an un-
countable dense set Y of translation vectors and a real analytic function
A : T2 → C with zero mean such that W is not recurrent.

Denote the translation vector by (α′, α′′). The main ingredient in
the construction of [126] is that the denominators, q′n and q′′n of the
convergents of α′ and α′′ are alternated, and more precisely, they are
such that the sequence ...q′n, q

′′
n, q
′
n+1, q

′′
n+1... increases exponentially. We

will see later that the same construction can be used to create examples
of mixing special flows with an analytic ceiling function.

Let Y be the set of couples (α′, α′′) ∈ R2 −Q2
, whose sequences of

best approximations q′n and q′′n satisfy, for any n ≥ n0(α′, α′′)

q′′n ≥ e3q′n ,

q′n+1 ≥ e3q′′n .

Then [126] constructs a real analytic function A : T2 → C with
zero integral such that for almost every (x, y) ∈ T2 |An(x, y)| → ∞,
hence Wα,A is not recurrent. Note that the set Y as defined above is
uncountable and dense in R2.

8.2.2. Indicator functions. Now we specify the study of Wα,A to the
case where

A = (χΩj − Vol(Ωj))j=1,...,r where Ωj ⊂ X = Td are regular sets.

If d > 1 then the DKP does not seem to be well adapted for proving
recurrence in this case (see Questions 6–10).

Question 28. Show that DKP does not hold when d > 1 and A =
(χΩj − Vol(Ωj))j=1,...,r and the Ωj ⊂ X are balls or boxes.

There is however another criterion for recurrence which is valid for
arbitrary skew products.

Theorem 32. Given a sequence δn = o(n1/r) the following holds.
(a) ([22]) Consider the map T : X → X preserving a measure µ.

Let W (x, y) = (Tx, y + A(x)). If there exists a sequence kn such that
lim
n→∞

µ(x : Akn(x) ≤ δn) = 1 then W is recurrent.

(b) Consider a parametric family of maps Tα : X → X, α ∈ A.
Assume that Tα preserves a measure µα. Let (α, x) be distributed ac-
cording to a measure λ on A × X such that dλ = dν(α)dµα(x) for

some measure ν on A. If

∑N−1
n=0 A(T nαx)

δN
has a limiting distribution as

N →∞ then Wα,A is recurrent for ν-almost all α.
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Note that T is not required to be ergodic. On the other hand if T
is ergodic, r = 1 and A has zero mean, then by the Ergodic Theorem
µ(|An/n| > ε)→ 0 for any ε so one can take kn = n and δn = εnn where
εn → 0 sufficiently slowly. Therefore Theorem 32 implies Theorem 29.

Proof. (a) Suppose B is a wondering set (that is, W kB are dis-
joint) of positive measure which is contained in {|z| < C}. Let

Bn = {(x, z) ∈ B : Akn(x) ≤ δn}.
Then µ(Bn)→ µ(B) as n→∞ so for large n

µ(∪1≤i≤nW
ki(Bki)) ≥ n

µ(B)

2
.

On the other hand, by assumption W ki(B) ⊂ Ei := {y ≤ 2C+δi} ⊂ En
if i ∈ [1, n]. Hence µ(∪1≤i≤nW

ki(Bki)) ≤ δrn = o(n), a contradiction.
(b) follows from (a) applied to the map T : (A×X)×Rr given by

T (α, x, y) = (α,Wα,A(x, y)). �

Combining Theorems 10 and 32(b) we obtain

Corollary 33. If {Ωj}j=1,...,r are real analytic and strictly convex

and (d−1)
2d

< 1
r

then W is recurrent for almost all α.

Note that the proof of Theorem 32 is not constructive.

Question 29. (a) Construct α and {Ωj}j=1,...,r for which the cor-
responding W is non recurrent.

(b) Find explicit arithmetic conditions which imply recurrence.

Theorem 34. ([22]) (a) If {Ωj}j=1,...,r are polyhedra then W is
recurrent for almost all α.

(b) There are polyhedra {Ωj}j=1,...,r and α in T2 such that W is
transient.

Here part (a) follows from Theorem 32 and a control on the growth
of the ergodic sums. Namely it is proven in [22] that given any polyhe-
dron Ω ⊂ Td then for any γ > 0, it holds that for almost every α ∈ Rd,
‖An‖2 = O(nγ) where A = χΩ−Vol(Ω), the sums are considered above
the translation Tα and the L2 norm is considered with respect to the
Haar measure on Td. In the case of boxes, the latter naturally follows
from the power log control given by Beck’s Theorem (see Section 3.1).

The proof of part (b) proceeds by extending the method of [126]
discussed in Section 8.2.1 to the case of indicator functions.

Question 30. Is it true that for a generic choice of Ωj as in Ques-

tion 33, W is transient for almost all α when (d−1)
2d

> 1
r
?
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An affirmative answer to Question 18 (Local Limit Theorem) would
give evidence that Question 18 may be true due to Borel Cantelli
Lemma. (More precisely, to answer Question 30 we need a joint Local
Limit Theorem for ergodic sums of indicators of several sets.)

Question 31. Let α be as in Theorem 34 (a) or Question 33. Does
there exist x such that limN→∞ ||AN(x)|| =∞?

Note that this is only possible if d > 1 due to the Denjoy-Koksma
inequality. On the other hand in any dimension one can have orbits
which stay in a half space. Such orbits have been studied extensively
(see [100] and the references wherein).

Another case where recurrence is not easy to establish is that of
skew products over circle rotations with functions having a singularity
such as the examples discussed in Section 2. We will come back to this
question in the next section.

8.3. Ergodicity. Next we discuss the ergodicity of cylindrical cas-
cades. Here one has to overcome both problems of recurrence discussed
in Section 8.2 and issues of non-arithmeticity appearing in the study
of ergodicity of Sα,A.

The ergodicity of Wα,A is usually established using the fact that
the sums ANn are increasingly well distributed on Rr when considered
above any small scale balls in the base and for some rigidity sequence
Nn, i.e. such that ‖Nnα‖ → 0. More precisely, usual methods of prov-
ing their ergodicity take into consideration a sequence of distributions

(31) (Ank)∗ (µ), k ≥ 1

along some rigidity sequence {nk} as probability measures on R̄r where
R̄ is the one-point compactification of R. As shown in [85] each point in
the topological support of a limit measure of (31) is a so called essential
value for Wα,A. Following [112] a ∈ Rr is called an essential value of
A if for each B ∈ Td of positive measure, for each ε > 0 there exists
N ∈ Z such that

µ(B ∩ T−NB ∩ [|AN(·)− a| < ε]) > 0.

Denote by E(A) the set of essential values of A. Then the essential
value criterion states as follows

Theorem 35. ([112],[1])
(a) E(A) is a closed subgroup of Rr.
(b) E(A) = Rr iff Wα,A is ergodic.
(c) If A is integer valued and E(A) = Zr then Wα,A is ergodic on

Td × Zr.
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Hence if the supports of the probability measures in (31) are in-
creasingly dense on Rr then Wα,A is ergodic.

The case where d = r = 1 is the most studied although there are
still some open questions in this context. For d = r = 1 ergodicity is
often proved using the Denjoy Koksma Property. Indeed, if A is not
cohomologous to a constant then AN −N

∫
A are not bounded. Let qn

be a best denominator for the base rotation. Pick Kn which is large
but not too large. Then Kqn is still a rigidity time for the translation
but AKqn have sufficiently large albeit controlled oscillations to yield
that a given value a in the fibers is indeed an essential value.

This method is actually well adapted to A whose Fourier transform
satisfies Â(n) = O(1/|n|), since they display a DKP (see [84]). Exam-
ple of such functions are A of bounded variation and A smooth with a
log symmetric singularity.

Ergodicity also holds in general for characteristic functions of in-
tervals.

Theorem 36. (a) If α is Liouville, there is a residual set of smooth
functions A with zero integral such that the skew product Wα,A is er-
godic.

(b) ([43]) If A has symmetric logarithmic singularity then Wα,A is
ergodic for all irrational α.

(c) ([24]) If A = χ[0,1/2] − χ[1/2,1] and α is irrational then Wα,A is
ergodic on T1 × Z.

(d) ([95]) If A = χ[0,β] − β then Wα,A is ergodic iff 1, α and β are
rationally independent.

(e) ([23]) If A : T → Rr = (A1, . . . , Ar) with Aj =
∑
cj,iχIj,i − βj

with Ij,i a finite family of intervals, cj,i ∈ Z and βj is such that∫
TAj(x)dx = 0 and if the sequence ({qnβ1}, . . . , {qnβr}) is equidis-

itributed on Tr as n → ∞, where qn is the sequence of denominators
of α, then Wα,A is ergodic. In the case r = 1, it is sufficient to ask that
({qnβ}) has infinitely many accumulation points, then Wα,A is ergodic.

For further results on the ergodicity of cascades defined over circle
rotations with step functions as in (e), we refer to the recent work [25].

The proofs of (a) and (b) are based on DKP and progressive diver-
gence of the sums as explained above. (c)–(e) are treated differently
since the ergodic sums take discrete values. For example, the proof
of (e) in the case r = 1 is based on the fact that Aqn is bounded by
DKP and then the hypothesis on {qnβ} implies that the set of essential
values is not discrete, hence it is all of R, from where ergodicity follows.
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The cases of slower decay of the Fourier coefficients of A are more
difficult to handle. We have nevertheless a positive result in the par-
ticular situation of log singularities.

Theorem 37. [39] If A has (asymmetric) logarithmic singularity
then Wα,A is ergodic for almost every α.

The delicate point in Theorem 37 is that the DKP does not hold.
Indeed, it was shown in [116] that the special flow above Rα and un-
der a function that has asymmetric log singularity is mixing for a.e.
α. But, as we will see in the next section, mixing of the special flow
is not compatible with the DKP. A contrario special flows under func-
tions with symmetric logarithmic singularities are not mixing [72, 84]
because of the DKP.

In the proof of Theorem 37, one first shows that the DKP (30) holds
if the constant δ is replaced by a sequence δn which decays sufficiently
slowly and then uses this to push through the standard techniques
under appropriate arithmetic conditions.

The case of general angles for the base rotation or the case of
stronger singularities are harder and all questions are still open.

Question 32. Are there examples of ergodic cylindrical cascades
with smooth functions having power like singularities?

Conversely, we may ask the following

Question 33. Are there examples of non ergodic cylindrical cas-
cades with smooth functions having non symmetric logarithmic or (in-
tegrable) power singularities?

The study of ergodicity when d > 1 and r > 1 is more tricky
essentially because of the absence of DKP.

For smooth observable, only the Liouville frequencies are interest-
ing. The ergodic sums above such frequencies tend to stretch at least
along a subsequence of integers. And this stretch usually occurs grad-
ually and independently in all the coordinates of A hence a positive
answer to the following question is expected.

Question 34. Show that for any Liouville vector α, there is a
residual set of smooth functions A with zero integral such that the skew
product Wα,A is ergodic.

As we discussed in the proof of Theorem 37, the cylindrical cas-
cade on T × R with a function A having an asymmetric logarithmic
singularity is ergodic for almost every α although the ergodic sums AN
above Rα concentrate at infinity as N → ∞. The slow divergence of
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these sums that compare to lnN (see Question 1) plays a role in the
proof of ergodicity. The logarithmic control of the discrepancy relative
to a polyhedron (see Theorems 6, 11 and 34) motivates the following
question.

Question 35. Is it true that for (almost) every polyhedra Ωj ⊂ Td,
j = 1, . . . , r, and A = (χΩj − Vol(Ωj))j=1,...,r, the cascades Wα,A are
ergodic?

We note that the answer is unknown even for boxes with d = 2 and
r = 1.

8.4. Rate of recurrence. Section 8.3 described several situa-
tions where Wα,A is ergodic. However for infinite measure preserv-
ing transformations the (ratio) ergodic theorem does not specify the
growth of ergodic sums. Rather it shows that for any L1 functions
B1(x, y), B2(x, y) with B2 > 0 we have

(32)

∑N−1
n=0 B1(W n

α,A(x, y))∑N−1
n=0 B2(W n

α,A(x, y))
→
∫∫

B1(x, y)dxdy∫∫
B2(x, y)dxdy

.

In fact ([1]) there is no sequence aN such that

(33)

∑N−1
n=0 B1(W n

α,A(x, y))

aN

converges to 1 almost surely. On the other hand, one can try to find
aN such that (33) converges in distribution. By (32) it suffices to do it
for one fixed function B. For example one can take B = χB(0,1). This
motivates the following question.

Question 36. Let α be as in Theorem 34 (a) or Question 33. How
often is ||WN || ≤ R?

So far this question has been answered only in a special case.
Namely, let d = r = 1, ZN(x) =

∑N−1
n=0

[
χ[0,1/2](x+ nα)− 1/2

]
. De-

note LN = Card(n ≤ N : Zn = 0).

Theorem 38. [6] If α is a quadratic surd then there exists a con-

stant c = c(α) such that
√

lnN
cN

LN converges to e−N
2/2.

Similar results have been previously obtained by Ledrappier-Sarig
for abelian covers of compact hyperbolic surfaces ([82]). The fact that

the correct normalization is N/
√

lnN was established in [2].

Question 37. Extend Theorem 38 to the case when 1/2 is replaced
by



LIMIT THEOREMS FOR TORAL TRANSLATIONS 41

(a) any rational number;
(b) any irrational number, (in which case one needs to replace

{AN = 0} by {|AN | ≤ 1}).

Question 38. What happens for typical α?

Note that in contrast to Theorem 38, LN ∼
N

lnN
(rather than

LN ∼
N√
lnN

) is expected in view of Kesten’s Theorem 9. Ideas of the

proof of Theorem 38 will be described in Section 9.5.

9. Special flows.

9.1. Ergodic integrals. In this section we consider special flows
above Tα which will be denoted T tα,A. Here A(·) > 0 is called the ceiling
function and the flow is given by

Td × R/ ∼ → Td × R/ ∼
(x, s) → (x, s+ t),

where ∼ is the identification

(34) (x, s+ A(x)) ∼ (Tα(x), s)

Equivalently the flow is defined for t+ s ≥ 0 by

T t(x, s) = (x+ nα, t+ s− An(x))

where n is the unique integer such that

(35) An(x) ≤ t+ s < An+1(x).

Since Tα preserves a unique probability measure µ then the special
flow will preserve a unique probability measure that is the normalized
product measure of µ on the base and the Lebesgue measure on the
fibers.

Special flows above ergodic maps are always ergodic for the prod-
uct measure constructed as above. The interesting feature of special
flows is that they can be more ”chaotic” then the base map, displaying
properties such as weak mixing or mixing even if the base map does
not have them. Actually any map of a very wide class of zero entropy
measure theoretic transformations, so called Loosely Bernoulli maps,
are isomorphic to sections of special flows above any irrational rotation
of the circle with a continuous ceiling function (see [96]).

If A = β is constant then Tα,A is the linear flow on Td+1 with
frequency vector (α, β). Thus special flows T tα,A can be viewed as time

changes of translation flows on Td+1. In particular, if we consider the
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linear flow on Td+1 and multiply the velocity vector by a smooth non-
zero function φ we get a special flow with a smooth ceiling function A.

9.2. Smooth time change. We recall that a translation flow fre-
quency v ∈ Rd is said to be Diophantine if there exists σ, τ > 0 such
that ||(k, v)|| ≥ C|k|−σ for every k ∈ Zd. Hence a translation vector
(1, v) ∈ Rd+1 is Diophantine (homogeneous Diophantine or Diophan-
tine in the sense of flows) if and only if v is a Diophantine vector in
the sense of (2).

Theorem 39. [76] Smooth non vanishing time changes of transla-
tion flows with a Diophantine frequency vector are conjugated to trans-
lation flows.

Proof. Let v be a constant vector field on Td+1. We suppose
WLOG that v = (1, α). Let u(x) be a smooth function on the torus

and ẋ = u(x)v. Then, making a change of variables y = T
φ(x)
v (x) we

obtain the equation ẏ = (φ+∂vφ)(y)u(y)v. The equation for y is linear

if φ+ ∂vφ =
c

u
. Passing to Fourier series, this equation can be solved if

c =
∫
φ(x)dx

(∫ dx

u(x)

)−1

and v is such that |1 + (k, v)|| ≥ C|k|−σ for

every k ∈ Zd+1 which is equivalent to α Diophantine as in (2).
One can also see this fact at the level of the special flow Tα,A as-

sociated to ẋ = u(x)v. Namely, making a change of variables (y, s) =

T
B(x,t)
α,A (x, t) transforms Tα,A to Tα,D with

D(x) = A(x) +B(x+ α, 0)−B(x, 0)

so one can make the LHS constant provided α is Diophantine. Finally,
the similarity between linear and nonlinear flows in the Diophantine
case is also reflected in (35) since for Diophantine vectors α An =
n
∫
A(x)dx+O(1). �

An interesting question is that of deviations of ergodic sums above
time changed linear flows. In fact, the case of linear flows is already
non trivial and can be studied by the methods described in Section 6.3.
More precisely, as for translations the interesting case occurs when the
function under consideration has singularities, for example, for indica-
tor functions.

Namely, given a set Ω let

(36) DΩ(r, v, x, T ) =

∫ T

0

χΩr(T
t
vx)dt− TVol(Ωr)
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where T tv denotes the linear flow with velocity v.
We assume that (x, v, r) are distributed according to a smooth den-

sity.

Theorem 40. ([28, 29]). Suppose that Ω is analytic and strictly
convex.

(a) If d = 2 then DΩ(r, v, x, T ) converges in distribution.

(b) If d = 3 then DΩ(r,v,x,T )
lnT

converges to a Cauchy distribution.

(c) If d ≥ 4 then DΩ(r,v,x,T )

r
d−1

2 T
d−3

2(d−1)

has limiting distribution as T →∞.
(d) For any d ∈ N, if Ω is a box then DΩ(r, v, x, T ) converges in

distribution.

The proof of Theorem 40 is similar to the proofs of Theorems 10
and 11 and Corollary 1.

Corollary 41. Theorem 40 remains valid for time changes Tu(x)v

where u(x) is fixed smooth positive function and v is random as in
Theorem 40.

Proof. To fix our ideas let us consider the case where Ω is analytic

and strictly convex. Note that T tuvx = T
τ(x,t)
v where the by the above

discussion the function τ satisfies

τ(t, x) = at+ ε(t, x, v) where a =

(∫
dx

u(x)

)−1

and ε(t, x, v) is bounded for almost all v uniformly in x and t. Accord-
ingly it suffices to see how much time is spend inside Ωr for the linear
segment of length at.

Next if the linear flow stays inside Ωr during the time [t1, t2] then

the time spend in Ωr by the orbit of Tuv equals to
∫ t2
t1

dt
u(x(t))

. Thus we

need to control the following integral for linear flow

D̃Ω(r, v, x, T ) =

∫ T

0

χΩr(T
t
vx)

u(T tvx)
dt− T

∫
Ωr

dx

u(x)
.

However the Fourier transform of
χΩr (x)

u(x)
has a similar asymptotics at

infinity as the Fourier transform of χΩr(x) (see [120]) so the proof of
the Corollary proceeds in the same way as the proof of Theorem 40 in
[28]. �

Up to now, we were interested in smooth time change of linear flows
with typical frequencies. We will further discuss smooth time changes
for special frequencies in Section 9.4 devoted to mixing properties.
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9.3. Time change with singularities. If the time changing func-
tion of an irrational flow has zeroes then the ceiling function of the
corresponding special flow has poles. In this case the smooth invariant
measure is infinite. In the case of a unique singularity, we have that
the time changed flow is uniquely ergodic with the Dirac mass at the
singularity the unique invariant probability measure:

Proposition 5. Consider a flow T t given by a smooth time change
of an irrational linear flow obtained by multiplying the constant vector
field by a function which is smooth and non zero everywhere except for
one point x0, then for any continuous function b and any x

lim
t→∞

1

t

∫ t

0

b(T ux)du = b(x0).

Proof. To simplify the notation we assume that the time change
preserves the orientation of the flow. We use the representation as a
special flow Tα,A with A having a pole.

It suffices to prove this statement in case b equals to 0 in a small
neighborhood of x0. In that case we have

(37)

∫ t

0

b(T uα,A(x, s))du = Bn(t)(x) +O(1)

where B(x) =
∫ A(x)

0
b(x, s)ds and n(t) is defined by (35). If b vanishes

in a small neighborhood of x0 then B is bounded and so |Bn(t)| ≤
Cn(t). Therefore it suffices to show that n(t)

t
→ 0 which is equivalent

to An
n
→ ∞. Let Ã be a continuous function which is less or equal to

A everywhere. Then

lim inf
An
n
≥ lim

n→∞

Ãn
n

=

∫
Ã(x)dx.

Since
∫
A(x)dx =∞ we can make

∫
Ã(x)dx as large as possible proving

our claim. �

Question 39. In the setting of Proposition 5 describe the devia-
tions of ergodic integrals from b(x0).

Question 40. Consider the case where the time change has finite
number of zeroes x1, x2, . . . , xm. In that case all limit measures are of
the form

∑m
j=1 pjδxj . Which pj describe the behavior of Lebesgue-typical

points?

In view of the relation (37) these questions are intimately related
to Theorems 3 and 5 and Questions 2, 4 and 5 from Section 2.
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Figure 2. Kocergin Flow is topologically equivalent to
the area preserving flow shown on Figure 1 with separa-
trix loop removed. The rest point is responsible for the
shear along the orbits.

If one is interested in flows with singularities but that preserve a
finite non-atomic measure then the simplest example can be obtained
by plugging (by smooth surgery) in the phase space of the minimal two
dimensional linear flow an isolated singularity coming from a Hamil-
tonian flow in R2 (see Figure 2). The so called Kochergin flows thus
obtained preserve besides the Dirac measure at the singularity a mea-
sure that is equivalent to Lebesgue measure [71]. As it was explained
in Section 2 Kochergin flows model smooth area preserving flows on
T2. These flows still have T as a global section with a minimal rotation
for the return map, but the slowing down near the fixed point produces
a singularity for the return time function above the last point where
the section intersects the incoming separatrix of the fixed point. The
strength of the singularity depends on how abruptly the linear flow is
slowed down in the neighborhood of the fixed point. A mild slowing
down, or mild shear, is typically represented by the logarithm while
stronger singularities such as x−a, a ∈ (0, 1) are also possible. Power-
like singularities appear naturally in the study of area preserving flows
with degenerate fixed points. We shall see below that dynamical prop-
erties of the special flows are quite different for logarithmic and power
like singularities.

Question 41. What can be said about the deviations of the ergodic
sums above Kocergin flows?

9.4. Mixing properties. We give first a classical criterion for
weak mixing of special flows. Its proof is similar to the proof of the
ergodicity criterion for skew products given by Proposition 4.

Proposition 6. ([123]) Tα,A is weak mixing iff for any λ ∈ R∗,
there are no measurable solutions to the multiplicative cohomological
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equation

(38) ei2πλA(x) = ψ(x+ α)/ψ(x).

Indeed if h(x, t) is the eigenfunction when for almost all x the func-
tion h(x, t)e−λt takes the same value ψ(x) for almost almost all t. Then
(38) follows from the identification (34).

Theorem 42. ([35]) If the vector α ∈ Rd is not β Diophantine
then there exists a dense Gδ for the Cβ+d topology, of functions ϕ ∈
Cβ+d(Td,R∗+), such that the special flow constructed over Rα with the
ceiling function ϕ is weak mixing.

This result is optimal since smooth time changes of linear flows with
Diophantine vectors α, are smoothly conjugated to the linear flow and,
hence, are not weak mixing.

Mixing of special flows is more delicate to establish since one needs
to have uniform distribution on increasingly large scales in R+ of the
sums AN for all integers N →∞, and this above arbitrarily small sets
of the base space. Indeed mixing of special flows above non mixing
base dynamics is in general proved as follows: if the ergodic sums AN
become as N → ∞ uniformly stretched (well distributed inside large
intervals of R+) above small sets, the image by the special flow at a
large time T of these small sets decomposes into long strips that are
well distributed in the fibers due to uniform stretch and well distributed
in projection on the base because of ergodicity of the base dynamics
(see Figure 3).

Figure 3. Mixing mechanism for special flows: the im-
age of a rectangle is a union of long narrow strips which
fill densely the phase space.
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The delicate point however is to have uniform stretch for all integers
N →∞. In particular the following result has been essentially proven
in [70].

Theorem 43. If A has DKP then T tα,A is not mixing.

Proof. If A has the DKP then there is a set Ω of positive measure
on which (30) holds for positive density of nk. By passing to a subse-
quence we can find a set I of positive measure, a sequence {tk} and a
vector β such that on Ω |Ank − tk| < C and αnk → β. Pick a small η.

Ωi = ∪0≤t≤ηT
t
α,A[I × {0}], Ωf = ∪0≤|t|≤C+ηT

t
α,A[(I + β)× {0}].

By decreasing I if necessary we obtain that those sets have measures
strictly between 0 and 1. On the other hand it is not difficult to see
from the definition of the special flow that µ(T tkα,AΩi ∩ Ωf ) → µ(Ωi)
contradicting the mixing property. �

In particular the flows with ceiling functions A of bounded variation
or functions with symmetric log singularities are not mixing.

In fact, since the sDKP holds for any minimal circle diffeomorphism,
it follows from (35) and (37) that any smooth flow on T2 without cycles
or fixed points is not topologically mixing. We leave this as an exercise
for the reader.

The first positive result about mixing of special flows is obtained in
[71].

Theorem 44. If α ∈ R − Q and A has (integrable) power singu-
larities then Tα,A is mixing.

The reason why the case of power singularities is easier than the
logarithmic case (corresponding to non-degenerate flows on T2) is the
following. The standard approach for obtaining the stretching of er-
godic sums is to control ∂An

∂x
=
(
∂A
∂x

)
n

For A as in theorem 44, ∂A
∂x

has singularities of the type x−a with a > 1. In this case the main
contribution to ergodic sums comes from the closest encounter with
the singularity (cf. Theorem 3) making the control of the stretch eas-
ier. Moreover, the strength of the singularity allows to obtain speed of
mixing estimates.

Theorem 45. ([34]) If α is Diophantine and A has a (integrable)
power singularity then T tα,A is power mixing.

More precisely, there exists a constant β = β(α) such that if R1, R2

are rectangles in T× R then

(39)
∣∣µ(R1 ∩ T tR2)− µ(R1)µ(R2)

∣∣ ≤ Ct−β.

The exponent β in [34] seems to be non optimal.
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Question 42. For α Diophantine find the asymptotics of the LHS
of (39).

It is interesting to surpass the threshold β = 1/2. In particular,
one would like to answer the following question.

Question 43. [83] Can a smooth area preserving flow on T2 have
Lebesgue spectrum?

On the other hand for logarithmic singularities there might be can-
celations in ergodic sums of ∂A

∂x
, making the question of mixing more

tricky.

Theorem 46. Let A be as in Question 1.
(a) ([71]) If

∑
j a

+
j =

∑
j a
−
j then T tα,A is not mixing for any α ∈

R−Q.
(b) ([116, 72]) If

∑
j a

+
j 6=

∑
j a
−
j then T tα,A is mixing for almost

every α ∈ R−Q.
(c) ([73]) If a+

j −a−j has the same sign for all j then T tα,A is mixing
for each α ∈ R−Q.

Question 44. ([74]) Does the condition that
∑

j a
+
j 6=

∑
j a
−
j imply

T tα,A is mixing for every α ∈ R−Q?

Question 45. ([74]) Under the conditions of Theorems 44 and 46
is T tα,A mixing of all orders?

In higher dimensions much less is known. Note that for smooth
ceiling functions Theorems 30, 39 and 43 precludes mixing for a set of
rotation vectors of full measure that also contains a residual set.

The following was shown in [36]. Recall the definition of the set Y
used in Theorem 31. Define the following real analytic complex valued
function on T2:

A(x, y) =

(
∞∑
k=2

ei2πkx

ek
+
∞∑
k=2

ei2πky

ek

)
.

Theorem 47. For any (α′, α′′) ∈ Y , the special flow constructed
over the translation Rα′,α′′ on T2, with the ceiling function 1 + ReA is
mixing.

Because of the disposition of the best approximations of α′ and α′′

the ergodic sums ϕm of the function ϕ, for any m sufficiently large,
will be always stretching (i.e. have big derivatives), in one or in the
other of the two directions, x or y, depending on whether m is far
from q′n or far from q′′n. And this stretch will increase when m goes to
infinity. So when time goes from 0 to t, t large, the image of a small
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typical interval J from the basis T2 (depending on t the intervals should
be taken along the x or the y axis) will be more and more distorted
and stretched in the fibers’ direction, until the image of J at time t
will consist of a lot of almost vertical curves whose projection on the
basis lies along a piece of a trajectory under the translation Rα′,α′′ . By
unique ergodicity these projections become more and more uniformly
distributed, and so will T t(J). For each t, and except for increasingly
small subsets of it (as function of t), we will be able to cover the basis
with such “typical” intervals. Besides, what is true for J on the basis
is true for T s(J) at any height s on the fibers. So applying Fubini
Theorem in two directions, first along the other direction on the basis
(for a time t all typical intervals are in the same direction), and second
along the fibers, we will obtain the asymptotic uniform distribution of
any measurable subset, which is, by definition, the mixing property.

Question 46. Are the flows obtained in Theorem 47 mixing of all
orders?

Question 47. For which vectors α ∈ Rd, there exist special flows
above Tα with smooth functions A such that Tα,A is mixing?

The foregoing discussion demonstrates that both ergodicity of cylin-
drical cascades and mixing of special flows require a detailed analysis
of ergodic sums (1). However, the estimates needed in those two cases
are quite different and somewhat conflicting. Namely, for ergodicity
we need to bound from below the probability that ergodic sums hit
certain intervals, while for mixing one needs to rule out too much con-
centration. For this reason it is difficult to construct functions A such
that Wα,A is ergodic while T tα,c+A is mixing. In fact, so far this has
only been achieved for smooth functions with asymmetric logarithmic
singularities. However, it seems that in higher dimensions there is more
flexibility so such examples should be more common.

Question 48. Is it true that for (almost) every polyhedron Ω ∈ Td,
d ≥ 2, and almost every a > 0, and almost every α ∈ Td, the special
flow above α and under the function a+ χΩ is mixing?

Note that a positive answer to both this question and Question
35 will give a large class of interesting examples where ergodicity of
Wα,A and mixing for Tα,c+A (for any c such that c + A > 0) hold
simultaneously.

Question 49. Answer Questions 35 and 48 in the case Ω is a
strictly convex analytic set.
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9.5. An application. Here we show how the geometry of special
flows above cylindrical cascades can be used to study the ergodic sums.
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Figure 4. Staircase surfaces. The sides marked by the
same symbol are identified.

Proof of Theorem 38. The proof uses the properties of the stair-
case surface St shown on Figure 4. The staircase is an infinite pile of
2 × 1 rectangles so that the left bottom corner of the next rectangle
is attached to the center of the top of the previous one. The sides
which are differ by two units in either horizontal or vertical direc-
tion are identified. We number all the rectangles from −∞ to +∞
as shown on Figure 4. There is a translational symmetry given by
G(x, y) = (x+ 1, y + 1) and St/G is a torus. We shall use coordinates
p̄ = (p, z) on the staircase where p are coordinates on the torus which
is the identified with rectangle zero and z ∈ Z is the index of rectangle.
Thus we have (p, z) = Gz(p, 0).

The key step in the proof is an observation of [53] that St is a
Veech surface. Namely, given A ∈ SL2(Z) such that A ≡ I mod 2
there exists unique automorphism φA of St which commutes with G,
fixes the singularities of St, has derivative A at the non-singular points
and has drift 0. That is, in our coordinates

(40) φ(p, z) = (Ap, z + τ(p))

and the drift condition means that
∫
T2 τ(p)dp = 0.
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Figure 5. Poincare map for a linear flow on the stair-
case. Orbits starting from [1/2, 1] go up while orbits
starting from [0, 1/2) have to go down due to the gluing
conditions.

Consider the linear flow on St with slope θ which is locally given
by T t(x, y) = (x + t cos θ, y + t sin θ). Let Π be the union of the top
sides of the rectangles in St. We identify Π with T× Z using the map
η : T×Z→ Π such that η(x, z) is the point on the top side of rectangle z
at the distance 2x from the left corner. It is easy to check (see Figure 5)
that under this identification the Poincare map for T t takes form

(x, z) = (x+ α, z + χ[1/2, 1](x)− χ[0,1/2)(z)) where α =
tan θ + 1

2
.

Now suppose that α and hence tan θ is a quadratic surd. By

Lagrange theorem there is A ∈ SL2(Z) such that A

(
cos θ
sin θ

)
=

λ

(
cos θ
sin θ

)
. By replacing A by Ak for a suitable (positive or nega-

tive) k we may assume that A ≡ I mod 2 and that λ < 1. Let ΓN(x)
be the ray starting from η(x, 0) having slope θ and length N

sin θ
.

LN =
mes(p̄ ∈ ΓN(x) : z(p̄) = 0)

length(ΓN(x)
=

mes(q̄ ∈ Γ̃(x) : z(φ−mA ) = 0)

length(Γ̃)

= Px(z(φ−mA q̄) = 0)

where Γ̃ = φmAΓN(x) and Px is computed under the assumption that

q̄ is uniformly distributed on Γ̃. Choose m to be the smallest number
such that length(φmAΓN(x)) = λm N

sin θ
≤ 1. Note that m ≈ lnN

lnλ
. By our

choice of m, Γ̃ is either contained in a single rectangle or intersects two
of them. Let us consider the first case, the second one is similar. So
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we assume that Γ̃ is in the rectangle with index a so that q̄ = (q, a).
Due to (40) z(φ−mq̄) = a−

∑m
j=1 τ(φ−jA q). Thus

Px
(
z(φ−mA q̄) = 0

)
= Px

(
m∑
j=1

τ(φ−jA q = a)

)
.

Now we apply the Local Limit Theorem for linear toral automorphisms
(see [99, Section 4] or [46]) which says that there is a constant σ2

Px

(
n∑
j=1

τ(φ−jA q)

)
≈ 1√

2πmσ
e−a

2/2σ2m.

It remains to note that

a(x) =
m−1∑
j=0

τ(φjAη(x, 0))

so applying the Central Limit Theorem for linear toral automorphisms

we see that if x is uniformly distributed on T1 then a(x)√
m

is approximately

normal with zero mean and variance σ2. �

Next we discuss the proof of Theorem 8(b) in case l = 1
2
. The proof

proceeds the same way as the proof of Theorem 38 with the following
changes.

(I) Instead of estimating the probability that z(φ−mA q̄) = 0 we need
to estimate the probability that z(φ−mA q̄) belongs to an interval of length√
m so we use the Central Limit Theorem instead of the Local Limit

Theorem.
(II) Instead of taking x random we take x fixed at the origin. Note

that the origin is fixed by A so τ(φmA (0, 0)) = Cm. (More precisely τ
is multivalued at the origin since it belong to several rectangles so by
τ(φmA (0, 0)) we mean the limit of τ(φmA (p̄)) as p̄ approaches the origin
inside ΓN(0).)

10. Higher dimensional actions

Question 50. Generalize the results presented in Sections 2-9 to
higher dimensional actions.

The orbits of commuting shifts T nx = x+
∑q

j=1 njαj are much less
studied than their one-dimensional counterparts. We expect that some
of the results of Sections 2-9 admit straightforward extensions while in
other cases significant new ideas will be necessary. Below we discuss
two areas of research where multidimensional actions appear naturally.
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10.1. Linear forms. Statements about orbits of a single trans-
lation can be interpreted as results about joint distribution of frac-
tional part of inhomogenuous linear forms of one variable evaluated
over Z. From the point of view of Number Theory it is natural to
study linear forms of several variables evaluated over Zd. Let li(n) =
xi +

∑q
j=1 αijnj, i = 1 . . . d. Thus it is of interest to study the discrep-

ancy

DN(Ω, α, x) =

Card(0 ≤ nj < N, j = 1, . . . , q : ({l1(n)}, . . . {ld(n)}) ∈ Ω)−N qVol(Ω).

The latter problem is a classical subject in Number Theory, and there
are several important results related to it. In particular, the Poisson
regime is well understood ([88]). The following result generalizes The-
orem 16 and can be proven by a similar argument.

Theorem 48. Let (α, x) be uniformly distributed on Td(q+1). Then
the distribution of

Card(n :
n

N
∈ Σ and ({l1(n)}, . . . {ld(n)}) ∈ N−q/dΩ)

converges as N →∞ to

N (Ω,Σ) := Card(e ∈ L, e = (x, y) : x(e) ∈ Ω, y(e) ∈ Σ)

where L is a random affine lattice in Rd+q.

Thus the Poisson regime for the rotations exhibits more regular
behavior comparing to standard Poisson processes. However then the
number of rotations becomes large the limiting distribution approaches
the Poisson. Namely, the following is the special case of the result
proven in [122].

Theorem 49. If Σq are unit cubes in Rq then Ω→ N (Ω,Σq) con-
verge as q →∞ to the Poisson measure µ(Ω) = Card(P ∩ Ω) there P
is a Poisson process on Rd with constant intensity.

Next we present extensions of Theorems 25, 24, 26 and 27 to the
context of homogeneous and inhomogeneous linear forms. Let again
li(n) = xi +

∑q
j=1 αijnj, i = 1 . . . d. Consider

VN(α, x, c) = Card(0 ≤ ni < N : ({l1(n)}, . . . {ld(n)}) ∈ B(c|n|−q/d)).
More generally given a function ψ : R+ → R+ define

V ψ
N (α, x) = Card(0 ≤ ni < N : ({l1(n)}, . . . {ld(n)}) ∈ B(ψ(|q|)).

We also let UN(α, c) = VN(0, α, c) and Uψ
N(α) = V ψ

N (0, α) be the
quantities measuring the rate of recurrence.
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In particular we call the matrix α badly approximable if there
exists c > 0 such that for, VN(0, α, c) is bounded. On the other hand,

if Uψ
N(α) → ∞ where ψ(r) = r−(d/q+ε) then α is called very well

approximable (VWA).
The following result is known as Khinchine–Groshev Theorem. Al-

most sure is considered relative to Lebesgue measure on the space of
matrices α ∈ Tdq.

Theorem 50. [64, 47, 31, 113, 14, 7] (a) If
∑

Zq |ψd(|n|) < ∞
then Uψ

N is bounded almost surely.
(b) If

∑
Zq ψ

d(|n|) = +∞ and either ψ is decreasing or dq > 1 then

limN→∞ U
ψ
N(α) = +∞ almost surely.

(c) For d = q = 1 there exists ψ such that
∑

n∈Z ψ(|n|) = +∞ but

Uψ
N is bounded almost surely.

(d) If ψ is decreasing and
∑

n∈Zd ψ
d(|n|) = +∞ then V ψ

N (α, x)→∞
almost surely.

In particular, both badly approximable and very well approximable
αs have zero measure.

When the number of hits is infinite, it is natural to consider the
question of the sBC property.

Theorem 51. [113] (a) For almost all α

Uψ
N(α) = E(Uψ

N) +O

(√
Γ(N) ln3 Γ(N)

)
where

Γ(N) =
∑
|n|≤N

ψ(|n|)dD(gcd(n1 . . . nq))

and D denotes the number of divisors.
(b) Γ(N) ≤ CE(Uψ

N) if either q > 3 or q = 2 and nψ2(n) is decreas-
ing.

(c) If q = 1 and ψ(n) is decreasing then for each δ

Uψ
N(α) = E(Uψ

N) +O

(√
Γ̃(N)E(Uψ

N) ln2+δ(E(Uψ
N))

)
where

Γ̃(N) =
N∑
n=1

ψ(n)

n
.

Question 51. Does a similar formula as that of Theorem 51 hold
for V ψ?
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Some partial results are obtained in [114].
It follows from the same argumentation as in the proof of Theorem

24 sketched in Section 7.3 that the sBC property holds for ψ(r) =
r−(d/q) for almost every (α, x), that is

lim
N→∞

VN(α, x)

E(VN(α, x))
= 1

For badly approximable α we have the following.

Theorem 52. [89] Let x be uniformly distributed on Td. If α is
badly approximable, there exists a constant K such that all limit points

of VN−E(VN )√
lnN

are normal random variables with zero mean and variance

σ2 where 0 ≤ σ2 ≤ K.

Question 52. (a) Show that there exist a constant σ̄2 > 0 that for

almost all α
VN − E(VN)√

lnN
converges to N(σ̄2).

(b) Does there exist α such that lim infN→∞
VN − E(VN)√

lnN
= 0 (that

is,
√

lnN is not a correct normalization for such α)?

For random α we have the following.

Theorem 53. ([30]) There exists σ such that If α1, . . . , αr and

x1, . . . , xd are randomly distributed on Tdr+d then VN−E(VN )√
lnN

converges

in distribution to a normal random variables with zero mean and vari-
ance σ2. A similar convergence holds if d + r > 2 and (x1, . . . , xr) =
(0, . . . , 0) and only the αi’s are random.

Still there are many open questions. We provide several examples.

Question 53. Extend Theorems 10 and 11 to the case q > 1.

We note that in the case of Theorem 11, even the case d = 1
seems quite difficult. One can attack this question using the method of
[29] but it runs into the problem of lack of parameters described after
Question 24.

Question 54. Let l, l̂ : Rd → R, be linear forms with random coef-
ficients, Q : Rd → R be a positive definite quadratic form. Investigate
limit theorems, after adequate renormalization, for the number of solu-
tions to

(a) {l(n)}Q(n) ≤ c, |n| ≤ N ;

(b) {l(n)}|l̂(n)| ≤ c, |n| ≤ N ;
(c) |l(n)Q(n)| ≤ c, |n| ≤ N ;

(d) |l(n)l̂(n)| < c, |n| ≤ N.
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While (a) and (b) have obvious interpretation as shrinking target
problems for toral translations, such interpretation for (c) and (d) is
less straightforward. Consider for example (c). Let l(n) =

∑q
j=1 αjnj.

Dividing the distribution of α into thin slices we may assume that αd
is almost constant. If αd ≈ a then we can compare our problem with

|
(∑q−1

j=1 α̃jnj

)
+ nq|Q(n) < c̃ where α̃j = αj/a, c̃ = c/a. Since |l(n)|

should be small we must have |
(∑q−1

j=1 α̃jnj

)
+ nq| = {

∑q
j=1 α̃j} in

which case Q(n1, . . . , nq−1, nq) is well approximated by

Q(n1, . . . , nq−1,−
q−1∑
j=1

α̃jnj)

so we have a shrinking target problem in lower dimensions. In fact as we
saw in Section 6 typically the proof proceeds in the opposite direction
by getting rid of fractional part at the expense of increasing dimension
since problems (c) and (d) have more symmetry and so should be easier
to analyze.

We note that part (d) deals with degenerate quadratic form. The
case of non-degenerate forms is discussed in [32, Sections 5 and 6].

10.2. Cut-and-project sets. Cut-and-project sets are used in
physics literature to model quasicrystals. To define them we need the
following data: a lattice in Rd, a decomposition Rd = E1 ⊕ E2 and a
compact set (a window) W ⊂ E2. Let P1 and P2 be the projections to
E1 and E2 respectively. The cut-and-project set is defined by

P = {P1(e), e ∈ L and P2(e) ∈ W}.

We suppose in the following discussion that

E1 + L = Rd and L ∩ E2 = ∅.

Then P is a discrete subset of E1 sharing many properties of lattices but
having a more complicated structure. Note that the limiting distribu-
tions in Theorems 16 and 48 are described in terms of cut-and-project
sets. We refer the reader to [92, Sections 16 and 17] for more discussion
of cut-and-project set. Here we only mention the fact that such sets
have asymptotic density. Let PR = {t ∈ P : |t| ≤ R}.

Theorem 54.

lim
R→∞

Card(PR)

Vol(B(0, R))
=

Vol(W)

covol(L)

VolRd

VolE1VolE2

.
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Proof. (Following [52]). Note that t ∈ P iff there exists e ∈ L
such that −t + e ∈ W , that is −t ∈ W mod L. Consider the action of
E1 on Rd/L given by T t(x) = x + t. Then PR counts the number of
intersections of the orbit of the origin of size R with W . Pick a small
δ and let Wδ = {W + t, |t| ≤ δ}. Then Wδ is a subset of Rd/L and for
small δ

(41) Vol(Wδ) = Vol(W)Vol(B(0, δ))
VolRd

VolE1VolE2

.

Next,

(42)

∫
|t|<R

χWδ
(T t0)dt = Vol(B(0, δ))Card(PR) +O(Rq−1)

where q = dim(E1) and the second term represents boundary contri-
bution. On the other hand by Unique Ergodicity of T t

(43)

∫
|t|<R

χWδ
(T t0)dt = Vol(B(0, R))

Vol(Wδ)

covol(L)
+ o(Rq).

Combining (41), (42) and (43) we get the result. �

Question 55. Describe the error term in the asymptotics of The-
orem 54.

If q = 1 then the error term in (42) is negligible and so (42) can
be used to describe the deviations (see [28] for the case where W is
convex). If q > 1 more work is needed to control both the LHS and
the RHS of (42).

While methods of [28, 29] deal with the case where dim(E1) is
as small as possible, the most classical case is the opposite one when
dim(E2) as large as possible, that is, studying lattice points in large
regions. Here we can not attempt to survey this enormous topic, so we
refer the reader to the specialized literature on the subject ([56, 57,
77]. We just mention that the limit theorems similar in spirit to the
results discussed in this paper are obtained in [49, 16, 17, 101]. More
generally, instead of considering large balls one can count the number
of lattice points in RD where D is a fixed regular set. As in Section 2
the order of the error term is sensitive to the geometry of D (see e.g.
[15, 78, 86, 94, 102, 106, 107, 118, 119] and references wherein).
In fact, one can also consider the varying shapes RDR which includes
both the Poisson regime where Vol(RDR) does not grow (see [18] and
references wherein) and the intermediate regime where Vol(RDR) grows
but at the rate slower than Rd (see [54, 124]).

This motivates the following question
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Question 56. Extend the results of the above mentioned papers to
cut-and-project sets.
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