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Abstract. In this paper we study the existence of analytic families of reducible linear quasi-
periodic differential equations in matrix Lie algebras. Under suitable conditions we show,
by means of a Kolmogorov–Arnold–Moser (KAM) scheme, that a real analytic quasi-
periodic system close to a constant matrix can be modified by the addition of a time-free
matrix that makes it reducible to constant coefficients. If the system depends analytically
on external parameters, then this modifying term is also analytic.

As a major application, we prove the analyticity of resonance tongue boundaries in
Hill’s equation with a small quasi-periodic forcing. Several consequences for the spectrum
of Schrödinger operators with quasi-periodic forcing are derived. In particular, we prove
that, generically, the spectrum of Schrödinger operators with a small real analytic and
quasi-periodic potential has all spectral gaps open and, therefore, it is a Cantor set. Some
other applications are included for linear quasi-periodic systems on so(3, R) and sp(n, R).
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1. Introduction and main result
In this paper we deal with linear equations in a certain matrix Lie algebra with quasi-
periodic coefficients and a dependence on certain external parameters. Linear equations
with quasi-periodic coefficients are of the type

x ′(t) = a(t)x(t), (1)

where x ∈ Rn and a is a matrix depending quasi-periodically on time (with frequency
ω ∈ R

d ) and belongs to g, a matrix Lie subalgebra of gl(n, R). The fact that a is
quasi-periodic means that there exists a lift (continuous at least), A : T

d → g, with
T = R/(2πZ), such that

a(t) = A(ωt)

for all t ∈ R.
We can make this quasi-periodicity more evident by writing the corresponding lifted

system of (1) for (X, θ) ∈ G × Td :

X′ = A(θ)X, θ ′ = ω, (2)

which defines a flow on G×T
d , because A ∈ g. Here G is a matrix Lie group of GL(n, R)

whose Lie algebra is g. Therefore, the map

X ∈ g �→ exp(X) ∈ G

is a well-defined diffeomorphism between g and a neighbourhood of the identity in G.
We are interested in the reducibility of this kind of equation to constant coefficients.

We will say that the linear quasi-periodic equation on g, (2), is reducible to constant
coefficients whenever there exists a matrix function Z : T

d → G (at least of class C1)
and a constant matrix B ∈ g (called the Floquet matrix) such that the change of variables

X = Z(θ)Y

transforms the system (2) into

Y ′ = BY, θ ′ = ω. (3)
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Remark 1. For general quasi-periodic equations we cannot expect the transformation Z to
be defined on Td , but on some finite covering of it. This is evident even in the periodic
case, where, unless the system is complexified, one must choose the transformation to
have a period that is double that of the original equation. However, in this paper we will
not change the Floquet matrix and we will be able to show the reducibility of the system
by means of a transformation, close to the identity, defined on Td itself.

The reducibility of (2) to (3) is equivalent to the fulfillment of the following homological
equation for the transformation Z : Td → G:

∂ωZ(θ) = A(θ)Z(θ) − Z(θ)B (4)

for all θ ∈ Td , where ∂ω· = 〈∇θ ·, ω〉 is the derivative in the ω-direction.
We will not deal with general equations such as (2), but only with those which are

perturbations of systems with constant coefficients and which depend on parameters.
That is, we will consider systems of the form

x ′ = (A0 + P(θ,µ))x, θ ′ = ω, (5)

where A0 ∈ g is a constant matrix, P = P(θ,µ) belongs to g for real values of θ and µ

and it is real analytic.
Equation (5) is a perturbation of a system with constant coefficients if P(θ,µ) is small.

For this kind of system and several different contexts, one has that (5) is reducible to
constant coefficients for almost all values of µ provided some generic conditions are met
(see [Eli92] for the case of sl(2, R) and [Kri99b] for compact Lie algebras). This also
seems to be the situation for general analytic quasi-periodic perturbations of systems with
constant coefficients (see [JS92, JS96] for results in positive measure). We would like
to stress that, even in the cases where almost-everywhere reducibility holds, there exist
generic sets of µ for which reducibility does not hold (see [Eli92, Eli02]).

Even if a system such as (5) is reducible to constant coefficients, the Floquet matrix will
not, in general, be A0 again. One can try, however, to modify (9) in a way such that the
perturbed system is reducible with Floquet matrix A0. This is an old idea going back to
[Mos67], see Remark 6. We will try to obtain a real analytic matrix function ξ∗ ∈ g such
that

x ′ = (A0 + P(θ,µ) − ξ∗(µ))x, θ ′ = ω, (6)

is reducible to the constant-coefficients system

y ′ = A0y, θ ′ = ω (7)

by means of a transformation
x = exp(X(θ, µ))y, (8)

where X ∈ g is real analytic in both θ and µ. If the transformation succeeds then the
equation ξ∗(µ) = 0 will determine an analytic family of systems of (5) that are reducible
to (7). This allows us to study the problem of the persistence and analyticity of these
families. To achieve our goal we will have to impose analyticity to the original system in
both θ and µ, the smallness of P and some arithmetic properties on the eigenvalues of A0

and the frequencies ω.
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One of our main motivations is to be able to detect bifurcations of the Floquet matrices
of reducible systems. We will introduce a scaling function χ = χ(µ), also real analytic,
of a suitable order k ∈ N of scaling and consider the system

x ′ = χ(µ)k(A0 + χ(µ)P (θ, µ))x, θ ′ = ω. (9)

Under some additional hypothesis on A0, we will show that a suitable modification of (9)

x ′ = χ(µ)k(A0 + χ(µ)P (θ, µ) − χ(µ)ξ∗(µ))x, θ ′ = ω

is reducible to constant coefficients with Floquet matrix χ(µ)kA0, where both ξ∗ and the
transformation depend analytically on µ. The treatment of this scaled case is postponed to
§1.2.

Remark 2. The requirement that the Floquet matrix of (6) is A0 (or χ(µ)kA0 in the scaled
case) is again imposed so as to preserve the good arithmetic relations between the
eigenvalues of A0 and the frequency vector ω.

1.1. Formulation of the main result. Let us first formulate the main result without the
scaling parameter χ . The reducibility of the modified system (6) to (7) by means of
the transformation (8) requires that Z = exp(X) satisfies the homological equation

∂ωZ(θ, µ) = (A0 + P(θ,µ) − ξ∗(µ))Z − ZA0, (10)

where the unknowns are X and ξ∗. If we try to solve the homological equation (10) by
means of (a modified) Newton’s quadratic method, we obtain the linear version (in X) of
(10), namely

∂ωX(θ,µ) = [A0,X] + P(θ,µ) − ξ∗(µ). (11)

Without imposing extra conditions, this equation needs not to have a solution (even
formally) and if there is such a solution it may not be unique. In addition, considering
different choices of ξ∗ may be interesting in different contexts. As we want the
convergence issues to be separated from the formal (algebraic) aspects, we will assume that
(11) is solvable in the following way. In our notation, Ca

ρ(Td , R) will stand for the space
of real analytic functions from P : T

d → g having an analytic extension to |Im θ | < ρ

and satisfying
|P |ρ := sup

|Im θ |<ρ

|P(θ)| < ∞.

Definition 3. Given a matrix Lie algebra, g, a quartet (A0, C, S, ω) is said to be admissible
if A0 ∈ g, C, S : g → g are linear operators with C2 = C and there exist positive constants
c, ν such that, for all real analytic P ∈ Ca

ρ(Td , g), the equations

∂ωX(θ) = [A0,X(θ)] + P(θ) − C(P̄ ), X̄ = S(P̄ ), (12)

where the bar denotes the average of a quasi-periodic function, have a unique real analytic
solution X : Td → g that satisfies the estimate

|X|ρ−δ ≤ c
|P |ρ
δν

(13)

for all 0 < δ < ρ.
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The main result now reads as follows.

THEOREM 4. Let g ⊂ gl(n, R) be a matrix Lie algebra, (A0, C, S, ω) an admissible
quartet, with positive constants c, ν, and ρ0 a positive number. Then there exists a constant
ε = ε(ρ0, c, ν, |A0|) > 0 such that for any real analytic matrix-function P : Td → g such
that

|P |ρ0 ≤ ε

there exists a ξ∗ ∈ g, with |ξ∗| ≤ 2ε and ξ∗ = C(ξ∗), such that the modified system

x ′ = (A0 + P(θ) − ξ∗)x, θ ′ = ω (14)

is reducible to the constant-coefficients system

y ′ = A0y, θ ′ = ω (15)

by means of a transformation x = Z(θ)y, of the form Z = exp(X), where X : Td → g is
real analytic and

|X|ρ0/2 ≤ c̃(ν)ερ−ν
0 ,

where c̃(ν) is a constant. Moreover, if P depends real analytically on µ ∈ Rp in a certain
ball around the origin then both X and ξ∗ depend real analytically on µ in a narrower
ball.

A more convenient version of the previous theorem for some applications will be stated
in §1.2. The proof of both theorems will be given in §5.

Remark 5. The modifying term ξ∗(µ) will also be called the counterterm.

Remark 6. This result is a reformulation of Moser [Mos67] who introduced the
counterterm. Some linear versions can be found in [BMS76] and [Kat70]. For a similar
result in the discrete and smooth context, see [Kri99a].

1.2. On admissible (A0, C, S, ω). Assume that A0 ∈ g and ω ∈ Rd are rationally
independent and fixed. One would like to have an effective method to determine operators
C, S : g → g such that the quartet (A0, C, S, ω) is admissible. A criterion of this kind
requires two conditions: one algebraic (which allows to compute a formal solution of
this problem) and another Diophantine (so that the previous formal solution is an actual
solution).

Let us try to formally solve (12) in terms of the Fourier coefficients of P : Td → g.
Writing

X(θ) =
∑

k∈Zd

Xkei〈k,θ〉, P (θ) =
∑

k∈Zd

Pkei〈k,θ〉

and equating the Fourier coefficients in (12) one obtains

i〈k, ω〉Xk = [A0,Xk] + Pk (16)

for k = 0 and
0 = [A0,X0] + P0 − C(P0) (17)
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for k = 0. Thus, the only condition on the operators S and C is that

0 = [A0, S(P0)] + P0 − C(P0) (18)

must hold for all P0 ∈ g. This can be understood at a more geometrical level making use
of the adjoint operator, which is the following linear operator on g:

adA0 : g → g

X �→ [A0,X].
In terms of this operator, (18) holds for all P0 ∈ g if and only if the operator C − adA0 ◦S

is the identity on g. To solve the equations for the remaining Fourier coefficients (16) one
needs that i〈k, ω〉I − adA0 is an invertible operator for all k ∈ Zd − {0}. Thus, we meet
the required condition on rational independence for the formal solution

λ − i〈k, ω〉 = 0 (19)

for all
λ ∈ Spec(adA0)

and k = 0. Note that the eigenvalues of adA0 will be of the form λ′ − λ′′, for λ′, λ′′ in the
spectrum of A0.

If we want this formal solution to be an actual solution of the homological equation
(12), we need to strengthen this non-resonance condition to have good control over the
small divisors. This is summarized in the following lemma.

LEMMA 7. Assume that A0 ∈ g, ω ∈ R
d and that there exist linear operators

C, S : g → g, with C2 = C such that C − adA0 ◦S is the identity on g. If there exist
positive constants τ,K such that the following Diophantine condition

inf
λ∈Spec(adA0 )

|λ − i〈k, ω〉| ≥ K

|k|τ for all k ∈ Z
d \ {0} (20)

is satisfied, then the quartet (A0, C, S, ω) is admissible.

To prove the lemma, it suffices to represent (16) and (17) in terms of a basis of the Lie
algebra g and then use the standard Diophantine conditions.

Example 8. If A0 ∈ g has all eigenvalues equal and ω is Diophantine, that is, there exist
positive constants K and τ such that the frequency vector ω satisfies

|〈k, ω〉| ≥ K

|k|τ for all k ∈ Z
d \ {0},

then, choosing C to be the identity and S to be zero, the quartet (A0, C, S, ω) is admissible.

As the counterterm ξ∗(µ) in Theorem 4 satisfies that C(ξ∗) = ξ∗ and the persistence
of a family of reducible quasi-periodic systems of (9) with Floquet matrix A0 requires the
condition ξ∗(µ) = 0, it is important that the dimension of the image of C in g, which we
denote as LC , is as small as we can. Note that in Example 8, the dimension of this space is
not necessarily minimal, as the special properties of A0 are not used. The following lemma
gives a condition of this kind.
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LEMMA 9. Let A0 ∈ g and ω satisfy the Diophantine conditions (20). Then the minimal
dimension of LC in g is the dimension of g as a subspace of gl(n, R) minus the dimension
of the image of adA0 in g.

Proof. As

C − adA0 ◦S = I,

it is clear that dim LC ≥ dim ker adA0 . If LC is chosen to be exactly ker adA0 and S so that
adA0 ◦S = adA0 the optimal bound is attained. �

Remark 10. Once LC is chosen to be the kernel of adA0 , the operator S is any linear
operator satisfying adA0 ◦S = adA0 .

In particular, if Spec(adA0) = {0} and ω is Diophantine, there exist choices of C and S

such that the quartet (χkA0, C, S, ω) is admissible for all values of the parameter χ in R.

One can use this uniformity in χ to obtain the following theorem.

THEOREM 11. Let g ⊂ gl(n, R) be a matrix Lie algebra, let (A0, C, S, ω) be admissible,
with positive constants c, ν and such that Spec(adA0) = {0}. Let ρ0 be a positive number.
Then there exists a positive constant ε = ε(ρ0, c, ν, |A0|) such that for any real analytic
matrix-function P : Td → g such that

|P |ρ0 ≤ ε

and for any |χ | ≤ 1, there exists a ξ∗ ∈ g, with ξ∗ = C(ξ∗), such that the modified system

x ′ = χk(A0 + χP(θ) − χξ∗)x, θ ′ = ω (21)

is reducible to the constant-coefficients system

y ′ = χkA0y, θ ′ = ω (22)

by means of a transformation x = Z(θ)y, of the form Z = exp(χX), where X : Td → g

is real analytic and

|X|ρ0/2 ≤ c̃(ν)ερ−ν
0 ,

where c̃ is a constant. Moreover, if P and χ depend real analytically on µ ∈ Rp in a
certain ball around the origin, then both X and ξ∗ depend real analytically on µ in a
narrower ball.

An example, which will be used in the following section, is the following.

Example 12. Let g = sp(1, R) = sl(2, R) and A0 be the nilpotent matrix
(

0 1
0 0

)
.

In the algebra sl(2, R) we can consider the basis formed by the elements

X11 =
(

1 0
0 −1

)
, X12 =

(
0 1
0 0

)
and X21 =

(
0 0
1 0

)
,



488 J. Puig and C. Simó

and let (x11, x12, x21)
T be the coordinates of an element X ∈ g with respect to this basis.

As

[A0,X] =
(

x21 −2x11

0 −x21

)
,

the spectrum of adA0 : g → g reduces to the zero eigenvalue with multiplicity three and
its kernel is the linear subspace of g spanned by X12. We can choose C, in the above
coordinates, as

c11(ξ) = 0, c12(ξ) = 0, c21(ξ) = ξ21

and, for example,

s11(ξ) = − 1
2ξ12, s12(ξ) = 0, s21(ξ) = ξ11.

With these definitions (A0, C, S, ω) is admissible.

1.3. Outline. Before ending the introduction, let us outline the contents of the present
paper. In §2 we include the main application of Theorems 4 and 11, which is the analyticity
of resonance tongue boundaries in Hill’s equation with quasi-periodic forcing,

x ′′ + (a + bq(t))x = 0,

where q is a quasi-periodic function with frequency ω, q(t) = Q(ωt) and a, b are real
parameters. The resonance tongues, which determine the closure of the areas in the
(a, b)-plane where the system

(
x

y

)′
=

(
0 1

−a − bQ(θ) 0

) (
x

y

)
, θ ′ = ω (23)

is reducible to a hyperbolic matrix, are shown to have real analytic boundaries, a = a(b),
provided that ω is Diophantine, Q real analytic and |b| sufficiently small. These tongue
boundaries, for every |b| small are characterized by the fact that system (23) is reducible
to constant coefficients with Floquet matrix

(
0 0
0 0

)

or (
0 1
0 0

)
,

depending on whether the two boundaries of the tongue merge or not. This allows us
to use Theorems 4 and 11 to study the persistence and analyticity of such families of
quasi-periodic systems reducible to these Floquet matrices. Hill’s equation with quasi-
periodic forcing shows up as the eigenvalue equation of one-dimensional Schrödinger
operators with quasi-periodic potential and the real analyticity of tongue boundaries has
direct applications to the structure of their spectrum. In §2.3 we prove the genericity of
‘having all gaps open’ (and, in particular, Cantor spectrum) for Schrödinger operators with
(small) real analytic potentials and Diophantine frequencies.
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In §3 linear equations with quasi-periodic coefficients in so(3, R) are considered.
To end the applications we show how the results of §2, together with some arguments of
Sacker–Sell spectral theory can be used to study hyperbolicity boundaries of Hamiltonian
systems in higher dimensions. This is done in §4.

The proofs of Theorems 4 and 11 are postponed to §5, where a classical Kolmogorov–
Arnold–Moser (KAM) scheme is presented. These proofs will be given in a unified way
because they only differ in some details. Finally, we include three appendices. Appendices
A and B deal with generalizations of Theorem 4 to the context of multiple resonances
and the presence of a time-reversing symmetry, respectively. Appendix C illustrates some
higher-dimensional phenomena numerically, to be compared with the results in §4.

2. Analyticity of tongue boundaries in quasi-periodic Hill’s equation and applications
In this section we present the main application of Theorems 4 and 11, which is the
analyticity of resonance tongue boundaries of Hill’s equation with quasi-periodic forcing.
This problem, together with the main application Theorem 13, are presented in §2.1.
The proof of Theorem 13 is given in §2.2 and the applications to the spectrum of quasi-
periodic Schrödinger operators, in §2.3.

2.1. Set-up: analyticity of tongue boundaries. In [BPS03] the stability and instability
zones of Hill’s equation with quasi-periodic forcing,

x ′′ + (a + bq(t))x = 0, (24)

with (a, b) ∈ R2 and q quasi-periodic with frequency ω ∈ Rd , were studied for small
values of |b|. Hill’s equation with quasi-periodic forcing is a generalization and extension
of the classical, periodic Hill equation. Both the periodic and the quasi-periodic case
occur as a first variation equation in the stability analysis of periodic solutions and lower-
dimensional tori in Hamiltonians with few degrees of freedom (see [Eli88, JV97, Bou97]).

As the function q is quasi-periodic (later on we also assume that it is real analytic) there
exists a real analytic lift Q : Td → R such that q(t) = Q(ωt) for all t ∈ R. In particular,
Hill’s equation (24) can be made autonomous introducing some new angular variables
θ ∈ Td ,

x ′′ + (a + bQ(θ))x = 0, θ ′ = ω (25)

and as a first-order quasi-periodic linear system introducing y = x ′ and

(
x

y

)′
=

(
0 1

−a − bQ(θ) 0

) (
x

y

)
, θ ′ = ω. (26)

Note that any choice of the form qφ(t) = Q(ωt + φ), with φ ∈ Td , gives rise to a Hill
equation of the form (24).

For fixed b ∈ R, Hill’s equation shows up as the eigenvalue equation of the one-
dimensional quasi-periodic Schrödinger operator

(H−bQ,ω,φx)(t) = −x ′′(t) − bQ(t)x(t), (27)
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which is an essentially self-adjoint operator on L2(R). If ω is rationally independent,
the spectrum of this operator is independent of the choice of φ ∈ Td and it will be
denoted by σ−bQ,ω. In this setting, the parameter a is called the energy (or the spectral
parameter). The study of such quasi-periodic Schrödinger operators is relevant in quantum
physics, see [Sok85]. For an exposition on the relations between the quasi-periodic
Schrödinger operator and its associated eigenvalue equation, see [BPS03] and the reviews
[Joh83, Eli98a, Eli98b, Eli99, Sim82].

Let us now quickly consider the periodic case, in our notation d = 1. In this case
the flow (26) is reducible to constant coefficients by means of a periodic transformation.
The corresponding Floquet matrix depends on (a, b), although it is not uniquely
determined. In the context of the study of the stability and instability regions of (26)
in the periodic case, resonance tongues are defined as the connected components in the
(a, b)-plane where the Floquet matrix of (26) is nilpotent.

In the quasi-periodic case, this definition makes no sense, as a system such as (26)
with d > 1 and ω rationally independent does not need to be reducible to constant
coefficients. Nevertheless, resonance tongues can be defined by means of the rotation
number introduced in [JM82] (see also [Her83, AS83]). Let us now briefly review this
object, following [JM82].

The rotation number of (24) is defined as

rot(a, b) = lim
T →+∞

arg(x ′(T ) + ix(T ))

2πT
,

where x is any non-trivial solution of (24). This number exists and is independent of the
particular solution. The map

(a, b) ∈ R
2 �→ rot(a, b)

is continuous and, for fixed b, is a non-decreasing function of a and vanishes if a < a∗
for some a∗. The introduction of resonance tongues is motivated by the ‘Gap Labelling
Theorem’ [JM82], which states that in the open intervals where the rotation number is
constant, it must be of the form

α = 〈k, ω〉
2

,

where k ∈ Z
d is a suitable multi-integer such that 〈k, ω〉 ≥ 0. This motivates the

introduction of resonance tongues, for any k ∈ Zd such that 〈k, ω〉 ≥ 0, as the set

R(k) = {(a, b) ∈ R
2 | rot(a, b) = 1

2 〈k, ω〉}.
Resonance tongues can be linked to the spectrum of Schrödinger operators with quasi-

periodic potential (27) as a function of b. Indeed, a value a belongs to the spectrum σ−bQ,ω

if and only if it is not a point of constancy of a �→ rot(a, b). Thus, the interior of a
resonance tongue is the union of all the intervals of the resolvent set of σ−bQ,ω, called the
non-collapsed spectral gaps. Whenever the closure of a certain spectral gap degenerates
to a point, this point is called a collapsed spectral gap. When two collapsed gaps occur
in a same tongue for two different values of b, we speak of an instability pocket in the
(a, b)-plane, see Figure 1. Compare also with [BL95, BS00] for analogues in the periodic
case.
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a

b

Instability pocket

Tongue boundaries

Collapsed gap

Non-collapsed gap

FIGURE 1. Resonance tongue with pocket in the (a, b)-plane giving rise to spectral gaps on each horizontal line
with constant b. Note how collapses of gaps correspond to crossings of the tongue boundaries at the extremities

of an instability pocket.

In the periodic case, it is well known (see [Rel69] and [MW79]) that the functions
defining the tongue boundaries, also called band functions, are real analytic (in b).
In [BPS03] the problem of the regularity of boundaries of resonance tongues was addressed
in the quasi-periodic case. Under the assumption of analyticity for Q and Diophantine
conditions on ω it was proved that the resonance tongue boundaries are C∞ functions of b,
for small values of |b|. That is, for any resonance tongue there exist two C∞-functions a1

and a2 such that the tongue is the set of those (a, b) that satisfy

min(a1(b), a2(b)) ≤ a ≤ max(a1(b), a2(b)).

Note that the functions min(a1(b), a2(b)) or max(a1(b), a2(b)) need not be C∞ (or even
differentiable) at a crossing of tongue boundaries, see Figure 1. Beyond this perturbative
result on the C∞ regularity of tongue boundaries, these are Lipschitz functions with a
constant that depends only on ‖Q‖C(Td ), see [BPS03].

Theorems 4 and 11 can be used to show that tongue boundaries are, in fact, real analytic
for |b| small enough. This is the contents of the following result.

THEOREM 13. Consider Hill’s equation with quasi-periodic forcing (24),

x ′′ + (a + bQ(ωt))x = 0,

with function Q : Td → R being real analytic and the frequency vector ω, Diophantine.
Assume that for (a0, b0) ∈ R2 the associated quasi-periodic flow on R2 × Td , (26), is re-
ducible to constant coefficients and it is at a tongue boundary. Then we have the following.
(i) If a0 is at the end of a non-collapsed gap of σ−b0Q,ω, the tongue boundary a = a(b)

such that a(b0) = a0 is real analytic in a neighbourhood of b0 and for (a, b) =
(a(b), b), the skew-product is reducible to constant coefficients.

(ii) If a0 is a collapsed gap of σ−b0Q,ω, the two tongue boundaries ai = ai(b) for
i = 1, 2, with ai(b0) = a0, are real analytic functions in a neighbourhood of b0.
Moreover, for (a, b) = (ai(b), b), i = 1, 2, the skew-product is reducible to constant
coefficients.

In both cases the reducing transformations depend real analytically on both θ and b.
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As for b = 0 the skew-product associated to Hill’s equation is always reducible to
constant coefficients (it is already in this form), one has the following consequence.

COROLLARY 14. If the potential Q is analytic and ω Diophantine, every tongue boundary
is an analytic function of b in a neighbourhood of b = 0.

2.2. Proof of Theorem 13. To prove Theorem 13 we will have to distinguish between
collapsed and non-collapsed gaps at some point. Nevertheless, both cases have the passage
to a perturbative situation as a common starting point.

Fix (a0, b0) as in Theorem 13. By hypothesis the skew-product is reducible to constant
coefficients, whose Floquet matrix we denote by A0. This matrix belongs to sl(2, R)

(as our setting is Hamiltonian) and satisfies A2
0 = 0, because a0 is at the endpoint of a

spectral gap. Moreover, the gap is collapsed if and only if A0 = 0 (see [BPS03]).
Let R : Td → G be a real analytic reducing transformation for (a, b) = (a0, b0) given

by the hypothesis. After this transformation, the skew-product becomes

y ′ =
(

A0 + (a − a0 + (b − b0)Q(θ))

(
r11r12 r2

12
−r2

11 −r11r12

))
y, θ ′ = ω, (28)

where the rij are the components of R. We introduce now µ = (α, β), where α = a − a0

and β = b − b0, as the new local perturbation parameters. We denote as P(θ,µ) the time
dependent part of (28), that is,

P(θ,µ) = (α + βQ(θ))

(
r11r12 r2

12
−r2

11 −r11r12

)
. (29)

Let us now distinguish between collapsed and non-collapsed gaps.

Non-collapsed gap. In this case, A0 satisfies A2
0 = 0 but A0 = 0. After performing a

change of basis if necessary, we may assume that

A0 =
(

0 1
0 0

)
.

Using Example 12 and denoting by pij the components of P , the choices

C

(
p11 p12

p21 −p11

)
=

(
0 0

p21 0

)

and

S

(
p11 p12

p21 −p11

)
=

(−p12/2 0
p11 p12/2

)

make (A0, C, S, ω) admissible, as ω is Diophantine. Thus, by Theorem 4, there exist a
real analytic function ξ∗

21(µ), defined in a neighbourhood of the origin, and a real analytic
X = X(θ,µ) ∈ g such that Z(θ,µ) = exp(X(θ, µ)) satisfies

∂ωZ = (A0 + P(θ,µ) − ξ∗(µ))Z − ZA0, (30)
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where

ξ∗(µ) =
(

0 0
ξ∗

21(µ) 0

)
.

Therefore, for the values of µ for which ξ∗
21(µ) = 0, system (28) (and thus also the original

skew-product for parameters (a, b) = (a0, b0) + µ) is analytically reducible to a constant-
coefficients system with Floquet matrix A0.

Hence, to prove item (i), we only need to show that the equation

ξ∗
21(α, β) = 0 (31)

can be inverted to obtain an analytic function α = α(β). Note that, averaging (30) with
respect to θ and using (29), one obtains the relation

ξ∗
21(α, β) = −α · r2

11 − β · Qr2
11 + O2(µ),

where O2(µ) collects terms of order greater than one in µ and we recall that the bar denotes

averaging with respect to time. As r2
11 = 0 (because r11 is a non-trivial quasi-periodic

solution of Hill’s equation), the Implicit Function Theorem yields a real analytic function
α = α(β) for which (31) holds.

Collapsed gap. As we have said before, in this case the Floquet matrix is A0 = 0.
To prove the analyticity of tongue boundaries we first use Theorem 4 to obtain a
representation of the quasi-periodic system suitable to show that either the two tongue
boundaries coincide (and are real analytic) or they have a finite order of contact. Then,
using techniques from [BPS03] and Theorem 11 we prove that the tongue boundaries are
real analytic in the latter case.

Using Example 8 and as ω is Diophantine, the choice C = I and S = 0 makes
(A0, C, S, ω) admissible. Hence, we can apply Theorem 4 to obtain real analytic functions
ξ∗

11(µ), ξ∗
12(µ) and ξ∗

21(µ), defined in a neighbourhood of the origin, and a real analytic
X = X(θ,µ) ∈ g such that Z(θ,µ) = exp(X(θ, µ)) satisfies

∂ωZ(θ, µ) = (P (θ, µ) − ξ∗(µ))Z(θ, µ), (32)

where P is defined as in (29) and

ξ∗(µ) =
(

ξ∗
11(µ) ξ∗

12(µ)

ξ∗
21(µ) −ξ∗

11(µ)

)
.

As will be seen in Appendix B, if q is even, q(t) = q(−t) for all t ∈ R, then ξ11 ≡ 0.
Most of the considerations in the present section are simpler in this reversible setting.

We want to find two functions α1(β) and α2(β) such that system (28) is reducible to
a Floquet matrix B(β) satisfying B2 = 0 if α = α1,2(β). In [BPS03] it was shown that
these αi were C∞ functions. In principle, it could happen that these two boundaries have
a C∞-tangency, but that they are not equal. First of all we shall rule out this possibility.

Note that the reducing transformation Z in (32) also defines a conjugation from the
original unmodified system

∂ωZ(θ, µ) = P(θ,µ)Z(θ, µ) − Z(θ,µ)(Z−1(θ, µ)ξ∗(µ)Z(θ, µ)).
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We will now study the analyticity of the boundaries of the resonance tongues of the system

x ′ = Z−1(θ, µ)ξ∗(µ)Z(θ, µ)x, θ ′ = ω. (33)

This system has the property that for every fixed value of θ , the matrix

S(θ, µ) = Z−1(θ, µ)ξ∗(µ)Z(θ, µ)

is similar to ξ∗, although the system is not necessarily conjugated to constant coefficients.
In particular, the eigenvalues of S do not change with θ . For this system, one has the
following lemma.

LEMMA 15. If det ξ∗(µ) > 0 then the rotation number of the quasi-periodic system (33)
is strictly non-zero.

Proof. Converting to polar coordinates, ϕ = arg(z2 + iz1) the flow on S1 × Td is given by
equations

ϕ′ = −s21(θ) sin2 ϕ + s12(θ) cos2 ϕ + 2s11(θ) cos ϕ sin ϕ, θ ′ = ω. (34)

The right-hand side is a quadratic form given by the matrix −JS. This last quadratic form
is definite if, and only if, det S > 0, which is equivalent to det ξ∗(µ) > 0. �

Moreover, averaging (32) and keeping in mind the definition of P in (29), we can
compute the first terms of ξ∗(µ):

ξ∗
12(α, β) = α · r2

12 + β · Qr2
12 + O2(µ),

ξ∗
21(α, β) = −α · r2

11 − β · Qr2
11 + O2(µ),

ξ∗
11(α, β) = α · r11r12 + β · Qr11r12 + O2(µ).

As in the case of a collapsed gap all solutions are quasi-periodic with frequency ω, by
selecting suitable initial conditions the transformation R can always be chosen so that

r2
11 = r2

12 = 1 and r11r12 = 0,

the expression for the determinant of ξ∗ becomes

det ξ∗(µ) = α2 + O(αβ, β2, α3).

This, together with Weierstrass Preparation theorem, shows that we can write, in a
neighbourhood of the origin,

det ξ∗(µ) = F(α, β)(α2 + g1(β)α + g2(β)),

where g1, g2 and F are real analytic functions with F(0, 0) = 1. For β = 0, using
Lemma 15 and the non-decreasing character of the rotation number with respect to α, the
rotation number goes from negative to positive values when α crosses zero. By continuity,
for β = 0 and |β| small, one should find some zero set in α. Therefore, the two roots of

α2 + g1(β)α + g2(β) = 0
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are real for all real values of β, so that

det ξ∗(α, β) = F(α, β)(α − α∗
1 (β))(α − α∗

2 (β)),

where α∗
1,2 = α∗

1,2(β) are two real analytic functions, see [Rel69].
As α∗

1 and α∗
2 are real analytic functions both vanishing at zero, either they coincide

or they have a tangency of some order. Let us assume first that they coincide, that is
α∗

1(β) = α∗
2 (β) for all β. Using the continuity and the monotonicity in α of the rotation

number, the rotation number of (33) is strictly positive if α > α∗
1 (β) and strictly negative

if α < α∗
1 (β). Therefore, the two tongue boundaries coincide in a neighbourhood of zero

and they are given by α∗
1(β).

If α∗
1 = α∗

2 , there exists an integer p ≥ 1 and a constant C = 0 such that

α∗
2 (β) − α∗

1 (β) = Cβp + Op+1(β).

We are going to see that this p is precisely the order of contact of the two tongue boundaries
at β = 0 and that the latter are real analytic functions. Note that α∗

1 and α∗
2 need not be the

parameterization of the tongue boundaries.
If the order of contact between α∗

1 and α∗
2 is p then, after some changes of variables in α

(which are described in [BPS03]), the matrix ξ∗ can be assumed to be of the form

ξ∗(α, β) =
(

S3(α, β) S2(α, β)

−S1(α, β) −S3(α, β)

)

with

S1(α, β) = α + σ1(β) + αρ1(α, β),

S2(α, β) = α + σ2(β) + αρ2(α, β),

S3(α, β) = σ3(β) + αρ3(α, β),

where
σj (β) =

∑
k≥p

mj,kβ
k, j = 1, 2, 3, (m1,p − m2,p)2 + m2

3,p > 0

and the possible terms in S1 and S2 of degree less than p in β, which must be equal, are
included inside α with a suitable redefinition of α.

The equation
γ 2 + (m1,p + m2,p)γ + m1,pm2,p − m2

3,p = 0

has two different roots which we denote as γ1 and γ2. Taking one of these, for instance γ1,
we perform the change of variables α = γ1β

p + δβp, which means that we restrict our
study to a wedge around a boundary of the ‘unperturbed’ problem of width δβp, with δ

small. In the new variables, δ and β, the matrix ξ∗ becomes

βp

((
m3,p (m1,p + γ1) + δ

−(m2,p + γ1) − δ −m3,p

)
+ O(β)

)
.

Therefore, the system (33) becomes

x ′ = βp

((
m3,p (m1,p + γ1) + δ

−(m2,p + γ1) − δ −m3,p

)
+ βP(θ, δ, β)

)
x, θ ′ = ω, (35)
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where we have used that X is of the order of β. The terms of order βp in this expression
will be written as (

a b + δ

−c − δ −a

)
.

Due to the definition of δ and γ1, bc − a2 = 0. Also, b and c cannot be zero at the same
time because in this case the order of contact of α∗

1 and α∗
2 would be greater than p. Let us

assume that b > 0 (the other cases are treated similarly). This assumption means that the
determinant of (35) is

β2p(δ(b + c + δ) + O(β)).

If we fix a δ < 0 then an application of Coppel’s criterion [Cop78] shows that (35) has
an exponential dichotomy if |β| > 0 is small enough. As the same can be done for γ2

this shows that the order of contact between the actual boundaries of the resonance tongue
is exactly p. This allows us to put ourselves in the context of [BPS03] where it was the
shown that the Taylor expansion of tongue boundaries up to any finite order is determined
by the normal form up to this order. Moreover, as higher-order terms of the normal form
do not change the first terms of the Taylor expansion, we may assume that, after suitable
changes in the variable δ, system (35) is of the form

x ′ = βp

((
a b + δ

−c − δ −a

)
+ β2P1(θ, δ, β)

)
x, θ ′ = ω. (36)

Comparing (36) with the format of Theorem 11 (see, for instance, (21)), the role of χ is
now played by β. The extra factor β (in the term β2P1) is needed to ensure that |βP1|
is small enough. Additional β factors in the non-autonomous part are easily obtained by
pushing the normal form some steps beyond p and modifying again the definition of α.
To be able to apply Theorem 11, one should put the non-autonomous part of the matrix in
(36) in the form of (21).

The analytical (in α, β) conjugation given by

T =




√
b + δ

b + c + δ
0

−a√
(b + δ)(b + c + δ)

√
b + c + δ

b + δ




transforms (36) into

x ′ = βp

((
0 b + c + δ

−δ 0

)
+ β2Q1(θ, δ, β)

)
x, θ ′ = ω,

where Q1 is a new perturbation, and the change given by(
b + c + δ 0

0 (b + c + δ)−1

)

transforms it into

x ′ = βp

((
0 1

−δ(b + c + δ) 0

)
+ β2R1(θ, δ, β)

)
x, θ ′ = ω, (37)

being R1 a perturbation defined by the conjugation and Q1.
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Now we are in situation to apply Theorem 11 to the system

x ′ = βp

((
0 1
0 0

)
+ β2R1(θ, δ, β)

)
x, θ ′ = ω. (38)

This yields the existence of a real analytic function ξ21 = ξ21(δ, β) such that

x ′ = βp

((
0 1

−βξ21(δ, β) 0

)
+ β2R1(θ, δ, β)

)
x, θ ′ = ω

is reducible to

x ′ = βp

(
0 1
0 0

)
x, θ ′ = ω, (39)

for |δ|, |β| small enough. Clearly, one also has that the counterterm(
0 0

−δ(b + c + δ) + βξ21(δ, β) 0

)

makes (37) reducible to (39). Therefore, the equation

δ(b + c + δ) − βξ21(δ, β) = 0

determines one of the components of the boundary of the resonance tongue (see [BPS03]).
Note that, as b + c > 0, this can be written as δ1 = δ1(β) = O(β), so that the expression
for this part of the tongue boundary is

α1(β) = γ1β
p + δ1(β)βp = γ1β

p + O(βp+1)

as we wanted to see (the case of γ2 is treated similarly). This shows the analyticity of
tongue boundaries around a collapsed gap and finishes the proof of Theorem 13. �

Remark 16. It is not possible to do the appropriate changes for a whole neighbourhood
of (α, β) = (0, 0) in view of the format of the transformation T or other similar
transformations.

2.3. Applications to the spectrum of quasi-periodic Schrödinger operators. Theorem 13
on the analyticity of tongue boundaries can be strengthened in conjunction with Eliasson’s
reducibility theorem [Eli92], which states reducibility at tongue boundaries under the
hypothesis of analyticity of the potential and Diophantine character of the frequency ω.

THEOREM 17. [Eli92] Let ω ∈ DC(c, σ, Rd ) be Diophantine and Q : Td → R be real
analytic in a strip of width ρ > 0. Then there is a constant C = C(c, σ, ρ) > 0 such that
if we define

λ0(s) =




(
s

C

)2

s ≥ C

−∞ s < C

then the following hold for a > λ0(|Q|ρ).
(i) If the rotation number rot(a, b) of (24) is Diophantine or rational, with respect

to ω, then the corresponding skew-product flow is reducible to constant coefficients
(with frequency ω/2).
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(ii) If a > λ0 is at the endpoint of a non-collapsed spectral gap then the Floquet matrix
B ∈ sl(2, R) satisfies B2 = 0, being B = 0 if and only if the gap is collapsed.

According to this theorem, under the hypothesis made on ω and Q, Hill’s equation is
reducible at the tongue boundaries for small values of |b| and all the values of a, or a large
enough once b has been fixed. The analyticity of tongue boundaries holds in this domain
as a consequence of Theorem 13.

COROLLARY 18. Let Q : Td → R be real analytic and ω ∈ DC(c, τ, Rd ) be
Diophantine. Then there is a constant C > 0, such that the tongue boundaries are real
analytic if |b| < C.

The analyticity of tongue boundaries in an open domain for (a, b) can be used to study
the genericity of ‘having all gaps open’ for a certain value of b. That is, to study the
opening of all spectral gaps for a certain value of b. The function space will be, for some
ρ > 0, the space Ca

ρ(Td , R) of real analytic functions Q : Td → R with analytic extension
to |Im θ | < ρ and

|Q|ρ < ∞.

THEOREM 19. Let ω ∈ DC(c, τ, Rd ) and ρ > 0 be fixed. Then, there exists a constant
C = C(c, τ, ρ) such that for a generic potential (i.e. in a Gδ set) in

{Q ∈ Ca
ρ(Td , R) : |Q|ρ < C},

with respect to the | · |ρ-topology, the operator

(HQ,ω,φx)(t) = −x ′′(t) + Q(ωt + φ)x(t)

has all spectral gaps open and, thus, it is a Cantor set.

This result answers a problem raised by Moser and Pöschel [MP84] asking whether
having all spectral gaps open is generic or, at least, having all spectral gaps open for
energies a large enough. Under the same hypothesis of the theorem, [Eli92] already
proves the genericity of Cantor spectrum. This has also been obtained for generic pairs
(ω,Q) ∈ Rd × Cδ(Td ), with 0 ≤ δ < 1 in [Joh91] (see also [FJP02]). For discrete
Schrödinger operators, see [Pui04] and references therein. The proof uses the following
lemma from [BPS03].

LEMMA 20. [BPS03] Let Q : Td → R be a real analytic potential and ω be Diophantine.
Let a1(b) and a2(b) be the two (analytic) tongue boundaries in a neighbourhood of zero
for some resonance k. Then

a′
1(0) = Q0 − |Qk| and a′

2(0) = Q0 + |Qk|,
where the Qk are the Fourier coefficients of Q and a′

i = dai/db.

The proof of Theorem 19 is then a consequence of the analyticity of the tongue
boundaries when the quasi-periodic system is reducible to constant coefficients. Indeed, if
the two tongue boundaries of a certain resonance have a transversality at the origin, then the
set of values of |b| ≤ C for which the two tongue boundaries merge is finite. Since there
is a countable set of resonance tongues the result follows.
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Remark 21. As it will be shown by Theorem 23, the condition that all the tongues are
transversal at b = 0 is not necessary. The only requirement is that these tongues have
some order of transversality at b = 0. If this is the case, the proof above shows that, if
Q = bV with |V |ρ = 1, then the spectrum σ(bV,ω) has all gaps open for all |b| < C

except for a countable set.

Using Eliasson’s result in the upper part of the spectrum, one can also conclude
genericity of ‘having all gaps open’ for quasi-periodic Schrödinger operators at large
energies.

COROLLARY 22. Fix a frequency ω ∈ DC(c, τ, Rd ). Then, the spectrum of the
Schrödinger operator of a generic potential in Ca

ρ(Td) has always a component in which
all spectral gaps are open. That is, there is a constant R > 0, depending only on c, τ and
the norm of Q, such that the spectrum of the operator restricted to the interval [R,+∞)

has all gaps open.

Let us now sketch the proof of this corollary. Let Q have all harmonics different from
zero. By Corollary 18, the tongue boundaries of

x ′′ + (a − bQ(ωt))x = 0

are analytic if a ≥ λ0(|b||Q|ρ) (see [Eli92, Eliasson’s theorem 17]). Fix b0 > 0 and let
R1 > 0 be such that R1 ≥ λ0(|b||Q|ρ) for all |b| ≤ b0. This means that in the domain
[R1,+∞) × [0, b0] of the parameter plane, tongue boundaries are analytic. Assume that a
tongue boundary lies in this domain for |b| ≤ b0. As it is analytic there, then their crossings
form a finite set at most.

As tongue boundaries are globally Lipschitz functions of b with uniform Lipschitz
constant [BPS03], there is a R ≥ R1 such that any tongue emanating from any a0 ≥ R

at b = 0 satisfies that a ≥ R1 for 0 ≤ b ≤ b0. In particular, the spectrum of a generic
potential in [R,+∞) has all gaps open.

Finally, one can also study the question of the opening of all gaps for a particular
potential.

THEOREM 23. Let d ≥ 2. Then, there is an exceptional set A ⊂ Rd , of zero measure,
such that if ω = (ω1, . . . , ωd) ∈ A, then there is a constant Cω such that for all values
of b, except for a countable set, with |b| ≤ Cω, the spectrum of the operator

Hx = −x ′′ + b

d∑
j=1

cj cos(ωj t)x,

where the constants cj are all different from zero and satisfy the normalization c2
1 + · · · +

c2
d = 1, has all gaps open.

This follows immediately from the next result, which describes the order of contact of
the ‘quasi-Mathieu’ equation,

x ′′ +
(

a + b

( d∑
j=1

cj cos(ωj t)

))
x = 0. (40)
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THEOREM 24. [BPS03] Consider the reversible near-Mathieu equation with quasi-
periodic forcing (40) as above. Then, the order of tangency at b = 0 of the k∗th resonance
tongue is greater than or equal to |k∗| and it is exactly |k∗| if and only if ω does not belong
to A(k∗), where A(k∗) is an algebraic subset of the Diophantine frequency vectors.

3. Analytic families of reducible linear quasi-periodic systems in so(3, R)

In this section we consider the existence of analytic families of reducible linear quasi-
periodic systems in so(3, R), the algebra of all real antisymmetric matrices (hence
with zero trace). Quasi-periodic linear equations in so(3, R) have been studied in
[Eli02, Kri99a, Mos98]. Let us start reviewing some basic facts on the geometry of
so(3, R).

If we denote by J1, J2, J3 the following Pauli matrices

J1 =

 0 1 0

−1 0 0
0 0 0


 , J2 =


0 0 0

0 0 1
0 −1 0


 , J3 =


 0 0 1

0 0 0
−1 0 0




then (J1, J2, J3) is a basis of so(3, R), and for the Lie bracket the following relation holds

[J1, J2] = J3, (41)

together with the other two circular permutations of indices 1, 2, 3. Using this basis, we
can express the Lie bracket [X,Y ] for any X,Y ∈ so(3, R). Indeed, assume that e, f ∈ R3

are such that

X = e1J1 + e2J2 + e3J3 and Y = f1J1 + f2J2 + f3J3.

Then it follows that

[X,Y ] =
∣∣∣∣e2 f2

e3 f3

∣∣∣∣ J1 −
∣∣∣∣e1 f1

e3 f3

∣∣∣∣ J2 +
∣∣∣∣e1 f1

e2 f2

∣∣∣∣ J3.

This expression yields an identification

v : (so(3, R), [·, ·]) → (R3,∧),

where ∧ is the exterior product by sending

v([X,Y ]) = v(X) ∧ v(Y ).

If A0 ∈ so(3, R3), then its eigenvalues are 0 and ±i|v(A0)|, where the norm on (R3,∧) is
assumed to be Euclidean.

Consider now a linear equation with quasi-periodic coefficients in so(3, R). This means
that there is a map A : Td → so(3, R) and a frequency vector such that

x ′ = A(θ)x, θ ′ = ω, (42)

where now x ∈ R3. Therefore, there exist ai : Td → R for i = 1, 2, 3, such that

A(θ) =

 0 a1(θ) a3(θ)

−a1(θ) 0 a2(θ)

−a3(θ) −a2(θ) 0


 .
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Let us restrict our attention to systems that are perturbations of a constant matrix.
That is, consider equations of the form

A(θ,µ) = A0 + P(θ,µ) (43)

with A0, P ∈ so(3, R) such that P(·; 0) = 0. To study analytic families of the above
equations that have a constant Floquet matrix it is necessary to have an expression for the
adjoint operator adA0 : g → g. In the basis (J1, J2, J3) one can assume, after a change of
basis, that

A0 = |v(A0)|J3

so that, if X = x1J1 + x2J2 + x3J3, then

adA0(X) =

 0 |v(A0)| 0

−|v(A0)| 0 0
0 0 0





x1

x2

x3




and the eigenvalues of adA0 are 0 and ±|v(A0)|. To check the non-resonance condition

|v(A0)| − 〈k, ω〉 = 0 (44)

when k ∈ Zd we have to consider three possibilities: it is always different from zero
(irrational case); it vanishes for k = 0 (degenerate case); or it vanishes for some k = 0
(rational case). Let us treat these three cases separately.

3.1. Irrational case. Assume that the non-resonance condition (44) is satisfied for all
k ∈ Zd . To be under the hypothesis of Lemma 7 one must impose the additional
Diophantine hypothesis:

| |v(A0)| − 〈k, ω〉| ≥ K

|k|τ for k = 0, (45)

where K, τ are some fixed positive constants. If, for

P0 = p1J1 + p2J2 + p3J3 ∈ so(3, R)

we define

S(P) =
(

− p2

|v(A0)| ,
p1

|v(A0)| , 0

)

and
C(P) = (0, 0, p3)

in the (J1, J2, J3)-basis of so(3, R), the quartet (A0, C, S, ω) is admissible by Lemma 7.
Therefore, there exists a real analytic function p3 = p3(µ) such that the system

x ′ = (A0 + P(θ,µ) − p3(µ)J3)x, θ ′ = ω (46)

is reducible to
x ′ = A0.

In particular, the condition p3(µ) = 0, which is real analytic, determines an analytic family
of reducible systems with Floquet matrix A0.
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3.2. Degenerate case. This case corresponds to |v(A0)| = 0 so that A0 = 0. According
to Example 8, if ω is Diophantine, we can choose the counterterm C to be the identity and
the operator S to be identically zero.

Applying Theorem 4, there exist real analytic functions ξ∗
1 , ξ∗

2 and ξ∗
3 of µ and a real

analytic matrix X = X(θ,µ) in so(3, R) such that the transformation Z = exp(X) satisfies

∂ωZ(θ, µ) =
(

P(θ,µ) −
3∑

j=1

ξ∗
j (µ)Jj

)
.

In particular, the three conditions ξ∗(µ) = 0 determine an analytic family of reducible
subsystems of (42) with Floquet matrix A0.

3.3. Rational case. This resonant case is characterized by the existence of some k0 = 0
such that

|v(A0)| = 〈k0, ω〉.
Note that, even if ω is Diophantine, the Diophantine condition (20) does not hold, although
this can be overcome, see Appendix A.

Nevertheless this situation of rational dependence can be reduced to the previous
degenerate case. Indeed, denote by α = |v(A0)| the positive eigenvalue of adA0 and
assume, as before, A0 is of the form A0 = αJ3.

Let y(t) = exp(αtJ3). As α = 〈k0, ω〉, y is quasi-periodic with y(t) = Y (ωt) ∈
SO(3, R) being

Y (θ) = exp(〈k0, θ〉J3),

which is real analytic. After the change of variables

x = Y (θ)y

the new unperturbed matrix is zero and we are in the degenerate case.

4. Hyperbolicity boundaries in higher dimensions

In this section we consider the problem of the generalization of Theorem 13 to higher-
dimensional Hamiltonian systems. Such a system has the form

x ′ = H(θ,µ)x, θ ′ = ω, (47)

where H ∈ sp(m, R) depends analytically on the angles θ ∈ Td and the external
parameters µ ∈ R

p in some neighbourhood of the origin. In what follows the frequency ω

is also assumed to be Diophantine. The dimension of (47) is thus n = 2m.

We are interested in the regions in the parameter space µ ∈ Rp for which system (47)
has an exponential dichotomy. Let us now quickly review this property. For a proper
exposition and more references see [SS78, HdlL04].
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4.1. Exponential dichotomy and Sacker–Sell spectral theory. A system like (47),

x ′ = A(θ)x, θ ′ = ω, (48)

but not necessarily Hamiltonian, has an exponential dichotomy if and only if the only
solution that is bounded on R is the trivial one. Exponential dichotomy is equivalent to a
certain splitting of the product space Rn × Td into stable and unstable subbundles as we
now explain.

If we denote by M(t; φ) a fundamental matrix for

x ′ = A(ωt + φ)x,

then the stable subbundle can be defined as

S =
{
(x, θ) ∈ R

n × T
d such that lim

t→+∞ |M(t; θ)x| = 0
}

and the unstable subbundle as

U =
{
(x, θ) ∈ R

n × T
d such that lim

t→−∞ |M(t; θ)x| = 0
}
.

For a general system (48) these subbundles need not be continuous as a function of θ but,
if (48) has an exponential dichotomy, then these subbundles are continuous (in fact as
regular as the original system see [Joh80] and [JS81]) and, for all values of θ , the sections

S(θ) = {(x, θ) ∈ S} and U(θ) = {(x, θ) ∈ U}
satisfy Rn = S(θ) ⊕ U(θ). In fact, if such a decomposition into continuous subbundles
holds, then the system has an exponential dichotomy.

Sacker–Sell spectral theory relies on the concept of exponential dichotomy and it is
defined as follows. A value λ ∈ R is in the Sacker–Sell spectrum of (50), �(A,ω), if the
system

x ′ = (A(θ) − λI)x, θ ′ = ω (49)

does not have an exponential dichotomy. The spectral theorem [SS78] states that the
Sacker–Sell spectrum is the union of, at most, n disjoint intervals, called the spectral
intervals. Moreover, if λ1 < λ2 do not belong to the spectrum (that is, they lie in the
resolvent set) and if Sλ1 is the stable subbundle of (49) when λ = λ1 and Uλ2 the unstable
subbundle when λ = λ2, then Sλ1 ∩ Uλ2 is an invariant subbundle of (50) and the Sacker–
Sell spectrum of the restriction of the flow to this subbundle is �(A,ω) ∩ (λ1, λ2).

An important property of exponential dichotomy is that it is persistent under small
quasi-periodic perturbations of the original system. This is the linear operator version
of the normal hyperbolicity results for dynamical systems, see, for instance, [HPS77].
In particular, this means that a value of the resolvent set of (48) belongs to it for small
perturbations of the system.

In [HdlL04], the structure of this spectrum for discrete-time quasi-periodic flows was
considered. These results apply to the case of continuous flows like (50) by taking Poincaré
maps. They derive several additional properties when the flow is Hamiltonian like (47).

First of all, if λ belongs to the Sacker–Sell spectrum of a quasi-periodic Hamiltonian
skew-product flow, then −λ also belongs to it. In particular, if there is a spectral interval
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including the zero, it is symmetric with respect to zero. Also, it has as a consequence
that the restriction of the flow to any invariant subbundle whose restricted flow has a non-
symmetric spectrum (like the stable or unstable subbundles) is not Hamiltonian.

There is one case when the restriction of a quasi-periodic Hamiltonian flow to an
invariant subbundle is again Hamiltonian. Let C be an invariant subbundle of (47) whose
spectrum (that is the spectrum of the restriction of the flow to it) is symmetric with
respect the origin. Then, the restriction of the flow is Hamiltonian [HdlL04]. This kind
of subbundle, and their restricted flows, are particularly important, as the exponential
dichotomy of (47) is equivalent to the exponential dichotomy of this reduced flow.
Such a continuous subbundle will be called a central subbundle. Note that the whole
space R

2m × Td is always a trivial central subbundle.

4.2. An example with analytic boundaries. Here we will focus only on the following
quasi-periodic system of equations

x ′′
0 = −ax0 + b

m∑
j=0

Q0j (θ)xj ,

x ′′
k = λ2

kxk + b

m∑
j=0

Qkj (θ)xj , k = 1, . . . ,m,

θ ′ = ω,

(50)

where a, b, λ1, . . . , λm are real parameters such that

λ1, . . . , λm > λ0 > 0, (51)

for some λ0 and the Qkj are real analytic functions. This can be written as a Hamiltonian
system like (47) if we set

H(θ) = H0 + bH1(θ) =

 0 I

−a 0
0 �

0


 +

(
0 0
Q 0

)
,

where � is the diagonal matrix � = diag (λ1, . . . , λm) and Q = (Qkj )k,j if y = (x, x ′)T

and
y ′ = (H0 + bH1(θ))y, θ ′ = ω. (52)

When b = 0 this system is in constant coefficients and in this case the study of the
Sacker–Sell spectrum and associated invariant subbundles is trivial. Assume furthermore
that a > −λ2

0. Then the Sacker–Sell spectrum is exactly the union

Sa,0 ∪ Ca,0 ∪ Ua,0,

where
Sa,0 = {−λ1} ∪ · · · ∪ {−λk}, Ua,0 = {λk} ∪ · · · ∪ {λ1}

and Ca,0 is {0} if a ≥ 0 or {−√−a} ∪ {√−a} if a < 0. Therefore system (52) has an
exponential dichotomy if, and only if, a < 0.
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Let Ca,0 be the invariant subbundle corresponding to the Ca,0. If b is small enough, then
the Sacker–Sell spectrum of (52) has three components Sa,b, Ca,b and Ua,b separated by
λ0 and −λ0. The corresponding spectral subbundles Sa,b, Ca,b and Ua,b, which are real
analytic, depend real analytically on a, b for a > −λ0 and b small enough [Joh80].

The flow on the central subbundle is again Hamiltonian and two-dimensional, as for
b = 0 the central subbundle Ca,0 is given by x1 = · · · = xm = x ′

1 = · · · = x ′
m = 0 and the

reduced flow (in the coordinates (x0, x
′
0, θ)) is precisely given by

x ′′
0 = −ax ′

0, θ ′ = ω. (53)

By the analytic dependence of the subbundles, the reduced flow on the central subbundle
Ca,b is given, in some new coordinates (ξ1, ξ2)

T, by

(
ξ1

ξ2

)′
=

((
0 1

−a 0

)
+ bP(θ, a, b)

)(
ξ1

ξ2

)
, θ ′ = ω, (54)

where P is a Hamiltonian matrix function depending real analytically on θ and (a, b) for
a > −λ0 and small values of |b|. Note that, after this reduction to the central subbundle,
(52) has an exponential dichotomy if and only if (54) has an exponential dichotomy.

As for b = 0, (54) reduces to (53), the resonances of our problem are the values of a of
the form ( 〈k, ω〉

2

)2

(55)

for some k ∈ Zd not identically zero, because for these values all of the solutions of (53)
are quasi-periodic with frequency ω/2. These resonant values of a lie precisely at the
boundaries of hyperbolic regions.

THEOREM 25. Assume that a0 is of the form (55) for some non-zero k ∈ Zd and that
λ1, . . . , λm satisfy (51) for some λ0 > 0. Then there exists a β0 > 0 and two real-analytic
functions a1 and a2, such that for |b| < β0:
(i) if (a, b) is such that (a − a1(b))(a − a2(b)) < 0 system (52) has an exponential

dichotomy;
(ii) if (a − a1(b))(a − a2(b)) = 0 system (52) does not have an exponential dichotomy;
(iii) for all ε > 0, there exists an a, with ε > (a − a1(b))(a − a2(b)) > 0, such that (52)

does not have an exponential dichotomy.

Proof. Theorem 13 also holds for systems of the form (54) so that, for any resonant value
of a0 there exist two real-analytic functions a1 and a2 such that a1(0) = a2(0) = a0, which
parameterize the boundaries of the region in the (a, b)-plane with zero rotation number for
|b| < β0. As the regions of constancy of the rotation number of (54) correspond to the
regions of exponential dichotomy, the result follows. �

After this example it is natural to ask whether similar results are true when in an equation
such as (50) the dimension of the central subbundle is greater than two. Appendix C
presents a numerical exploration of the case dim Ca,0 = 4. There is a strong evidence that
the boundaries of the regions of exponential dichotomy are not analytic.
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5. Proofs of Theorems 4 and 11
In this section we will prove Theorems 4 and 11. The proofs of both results follow
the same guidelines and we will prove them at the same time. We give the proof of
Theorem 11 because there is an additional element, the scaling factor, which has to be
taken into account. The reader interested in Theorem 4 only can replace χ by 1 whenever
it appears. Recall that Theorem 11 requires some additional properties on the eigenvalues
of the adjoint of A0.

We will first prove Theorem 11 disregarding the dependence on the external parameters
µ and then we will explain what needs to be done in order to prove the analyticity with
respect to these parameters.

To prove Theorem 4 we must show the existence of a constant element ξ∗ ∈ g, with
C(ξ∗) = ξ∗, and Z : Td → G, of the form Z = exp(χX) with X ∈ g small (therefore Z

is close to the identity), such that

∂ωZ(θ) = χk(A0 + χP(θ) − χξ∗)Z − ZχkA0, θ ∈ T
d . (56)

This is a nonlinear homological equation that we will try to solve by Newton’s quadratic
method (following [Mos67, BMS76]). It is an iterative process in which the final
transformation Z will be given as the infinite composition of the transformations that will
be defined at each step. Note that ξ∗ is not yet known and it will have to be determined
along the iterative process. To make this more evident we write this equation as

∂ωZ(θ) = χk(A0 + χP(θ) − χη)Z − ZχkA0, θ ∈ T
d , (57)

where η ∈ g is now a variable. At each step of the iterative process we will define new
transformations Zr in G and ξr : g → g, which will reduce the system to constant
coefficients up to a certain perturbation that will become smaller and smaller. The domains
in θ of the composition of the transformations Z0, . . . , Zr will shrink to a narrower, but
non-empty, complex strip of T

d . The domains for which the composition ξ0 ◦ · · · ◦ ξr

is defined will quickly shrink to zero and the image of zero under this composition will
define the sought ξ∗. To see this more clearly, we proceed a bit further in this iterative
process before giving the inductive lemma. Writing Z = exp(χX), the linear version
of (57), with respect to the size of the perturbation, becomes

∂ωX(θ) = χk([A0,X] + P 0(θ) − η0), θ ∈ T
d , (58)

where we have written P 0 = P and η0 = η to stress that this is the first step of an iterative
process. The admissibility of (χkA0, C, S, ω) implies that (58) can be uniquely solved in
any strip of Td narrower than ρ provided that η0 is taken equal to η̂0 = C(P ) and we set
X = S(P ). Let X0(θ) be the solution for this choice of η0. Then Z0 = exp(χX0) satisfies

∂ωZ0(θ) = χk(A0 + χP 0(θ) − χη0)Z0

− Z0χk(A0 + χP1(θ, η0) − χη0 + χC(P )), θ ∈ T
d , (59)

where P1(θ, η0) is the new perturbation defined by the above equation. Up to now we
have defined the transformation Z0, but we have not yet defined the transformation for η0
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to render it closer to zero. In order to put the right-hand side of (59) in the form of the
left-hand side we introduce a new variable η1 satisfying

η1 = η0 − C(P ). (60)

This trivially defines a diffeomorphism ξ0 : g → g

η1 �→ ξ0(η1) = η0 = η1 + C(P ),

which allows us to express (59) in the new variable η1 as follows:

∂ωZ0(θ) = χk(A0 + χP 0(θ) − χξ0(η1))Z0(θ)

− Z0(θ)χk(A0 + χP 1(θ, η1) − χη1), θ ∈ T
d (61)

if we set P 1(θ, η1) = P1(θ, ξ0(η1)).
The point in choosing these transformations Z0 and ξ0 is that the perturbations on the

right-hand side are much smaller than those on the left. This will be shown in the following
section. We would like to stress that each step of the transformation involves two changes
of variables. First, using the admissibility of (χkA0, C, S, ω), we perform the change Z,
which implies considering narrower strips around the torus Td . Second, inverting (60)
we perform a change in the variable η so that the system in this new variable is closer
to A0. Of course, in this first step, the transformation ξ0 defined by (60) is globally a
diffeomorphism, but in the next steps the domains of definition of the transformation of η

will rapidly shrink to zero.

5.1. The inductive lemma. To prove that at each step of the iterative process the
transformed system belongs to the same Lie algebra g, we use the following proposition.

PROPOSITION 26. Let g be a matrix Lie algebra and Y : R → g any smooth function.
Then, we have the following.
(i) For all t ∈ R the element (exp(Y (t)))′ exp(−Y (t)) belongs to g.
(ii) If a, b : R → gl(n, R) are continuous functions that satisfy the equation

(exp(Y (t)))′ = a(t) exp(Y (t)) − exp(Y (t)) b(t), t ∈ R,

then a(t) ∈ g for t ∈ R if and only if b(t) ∈ g for t ∈ R.

Proof. First of all, note that (ii) is a direct consequence of (i). Indeed, if X(t) = exp(Y (t)),
then one has the identities

b = −X−1X′ + X−1aX = (X−1)′X + X−1aX,

and also
a = X′X−1 + XbX−1.

Then (ii) follows from (i), applying (i) to −Y and Y , respectively, and using the invariance
of g by conjugations by matrices in G. The proof of (i) makes use of the following property
of Lie algebras (see [Pos86], for instance). Let Y0, Y1 ∈ g. Then

exp(Y0 + tY1) exp(−Y0) = exp

(
t
exp(adY0) − I

ad Y0
Y1 + o(t)

)
,
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where (exp(ad Y0) − I)/ad Y0 is the sum of an operator series

I + adY0

2! + · · · + (adY0)
k

(k + 1)! + · · ·

and adY0 : g → g is the adjoint operator of Y0. Let t0 ∈ R and write Y0 = Y (t0) and
Y1 = Y ′(t0), both belonging to g. Note that

d

dt
(exp(Y (t)))t=t0 exp(−Y (t0)) = d

dt
(exp(Y0 + (t − t0)Y1))t=t0 exp(−Y0)

= d

dt
(exp(Y0 + (t − t0)Y1) exp(−Y0))t=t0

= exp(adY0) − I

adY0

Y1 ∈ g,

and the proposition follows. �

Now we can state the inductive lemma.

LEMMA 27. (The inductive lemma) Assume that (A0, C, S, ω) is admissible with
constants c and ν. Fix a complex domain

Dr : |Im θ | < ρr, |ηr | < σr

and a constant 0 < δr < ρr . Then there exists a constant K = K(g) such that if P r is
analytic on Dr , belongs to g for real values of (θ, ηr ), and

|P r |Dr = sup
(θ,ηr )∈Dr

|P r(θ, ηr )| ≤ εr < Kσr (62)

then, in the domain

Dr+1 : |Im θ | < ρr − δr, |ηr | < σr/2

the transformation
Zr(θ, ηr ) = exp(χXr (θ, ηr)), (63)

where Xr(θ, ηr) satisfies

∂ωXr = χk([A0,X
r ] + P r − C(P r (ηr ))), Xr = S(P r (ηr )), (64)

is real analytic and the equation

ηr+1 = ηr − C(P r (ηr)) (65)

defines an analytic diffeomorphism ξr

ηr+1 ∈ D(0, εr ) �→ ξr (ηr+1) ∈ D(0, 2εr)

such that the equation

∂ωZr(θ, ξr (ηr+1)) = χk(A0 + χP r (θ, ξr (ηr+1)) − χξr (ηr+1))Zr

− Zrχk(A0 + χP r+1(θ, ηr+1) − χηr+1) (66)
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holds in the domain

Dr+1 : |Im θ | < ρr − δr , |ηr+1| < εr

with the estimates

|Xr |Dr+1 ≤ M := c
εr

δν
r

, (67)

|P r+1|Dr+1 ≤ (e|χ |M − 1)(εr + 5εre
|χ |M + 2|A0|e|χ |MM) + |A0| |χ |M2e2|χ |M (68)

and
|Dηr+1ξ

r |εr ≤ 1 + c1
εr

σr

, (69)

where the constant c1 depends only on g.

Remark 28. The estimate (67) comes from the admissibility of (χkA0, C, S, ω) and it is
included in the statement of the lemma only for the sake of completeness.

Remark 29. The difference between the domains Dr+1 and Dr+1 is due to the η

component. The restriction for the η component in Dr+1 allows us to define the map

(θ, ηr+1) ∈ Dr+1 �→ (θ, ξ r (ηr+1)) ∈ Dr+1,

which inverts (65). Similarly to what we did for the first step, a perturbation Pr+1 :
Dr+1 → g is defined by

∂ωZr(θ, ηr) = χk(A0 + χP r (θ, ηr) − χηr)Zr

− Zrχk(A0 + χPr+1(θ, ηr) − χηr + χC(P r (ηr ))), (70)

and later on we will define the perturbation P r+1 : Dr+1 → g as

P r+1(θ, ηr+1) = Pr+1(θ, ξ r (ηr+1))

so that (66) holds.

Proof. First of all we compute Pr+1 in terms of Zr , Xr , A0, P r and ηr . The identities (63)
and (64) determine Pr+1 when χ = 0

Pr+1(θ, ηr) = (I − (Zr)−1)(ηr − C(P r (ηr))) − (Zr)−1

×
(

1

χ
[A0, χXr − Zr ] + P r (I − Zr) + ηr(Zr − I) + 1

χk+1
∂ω(Zr − χXr)

)

(71)

on Dr+1. For the proof of Theorem 11, one also has to define the value for χ = 0.
This can be done taking the limit of the above expression when χ → 0 and obtain

Pr+1(θ, ηr ) = 0. (72)

As A0, Xr and P r belong to g for real values of θ and ηr ∈ g, then necessarily Pr+1 ∈ g

for these real values, due to Proposition 26. In order to be able to define

P r+1(θ, ηr+1) = Pr+1(θ, ξ r (ηr+1)), (θ, ηr+1) ∈ Dr+1

we first need to know that (65) can be inverted so that the map ξr can be defined.
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5.1.1. Inversion of (65). Let Fr(ηr ) = C(P r (ηr )). Then Fr is analytic on the ball
D(0, σr ). By Cauchy estimates we have

|Dηr F r |σr/2 ≤ c′ |Fr |σr

σr − σr/2
≤ 2c′ εr

σr

,

where c′ is a constant depending only on g. Assume that

K < min

(
1

4
,

1

4c′

)
. (73)

In this case, (65) is invertible when |ηr | < σr/2 and, as

|ξr (ηr+1)| ≤ |ηr+1| + |Fr(ξr (ηr ))|,
then for |ηr+1| < εr one has

|ηr | < 2εr .

As εr > Kσr,

2εr ≤ σr

2
,

and the map ξr ,

ηr+1 ∈ D(0, εr ) �→ ξr (ηr+1) ∈ D

(
0,

σr

2

)
,

is well-defined. Moreover,

|Dηr+1ξ
r |εr ≤ 1

1 − |Dηr F r |σr/2
≤ 1

1 − 2c′(εr/σr )
≤ 1 + c1

εr

σr

,

writing c1 = 4c′, as we wanted to show.

5.1.2. Bounds for P r+1. Once we have inverted (65) we can now estimate
P r+1(θ, ηr+1) = Pr+1(θ, ξ r (ηr+1)) on Dr+1, which, in virtue of (71), can be expressed
as follows:

P r+1(θ, ηr+1) = (I − Z−1)(ξr (ηr+1) − C(P (ξr (ηr+1))))

− Z−1
(

1

χ
[A0, χX − Z] + P r(θ, ξr (ηr+1))(I − Z)

+ ξr (ηr+1)(Z − I) + 1

χk+1
∂ω(Z − χX)

)
, (74)

where we write Z = Zr(θ, ξr (ηr+1)) and X = Xr(θ, ξr (ηr+1)) only for simplicity.
To bound this remainder, we will estimate all of the terms in the above expression. First of
all note that, as (θ, ξr (ηr+1)) ∈ Dr+1 for (θ, ηr+1) ∈ Dr+1, then

|X|Dr+1 ≤ |Xr |Dr+1 ≤ c
εr

δr
ν =: M.

Now we are ready to bound the terms of (74)

|I − Z−1|Dr+1 =
∣∣∣∣

∞∑
j=1

(−1)j

j ! (χX)j
∣∣∣∣Dr+1

≤ e|χ |M − 1.
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|ξr − C(P r (ξr ))|Dr+1 = |ηr+1|Dr+1 ≤ εr .

|Z−1|Dr+1 ≤ e|χ |M.

∣∣∣∣ 1

χ
[A0, χX − Z]

∣∣∣∣Dr+1
= 1

|χ | |[A0, I + χX − Z]|Dr+1

≤ 2

|χ | |A0||I + χX − Z|Dr+1

≤ 2

|χ | |A0|(e|χ |M − 1 − |χ |M) ≤ |χ |M2|A0| exp(|χ |M).

|P r |Dr+1 ≤ εr .

|I − Z|Dr+1 ≤ e|χ |M − 1.

|ξr |Dr+1 ≤ 2εr.

1

|χk+1| |∂ω(Z − χX)|Dr+1 = 1

|χk+1|
∣∣∣∣

∞∑
j=2

1

j !∂ω((χX)j )

∣∣∣∣Dr+1

≤ 1

|χk+1| (exp(|χ ||X|Dr+1) − 1)|χ | |∂ωX|Dr+1

≤ (e|χ |M − 1)(2|A0|M + 2εr).

Collecting all of these estimates we have

|P r+1|Dr+1 ≤ (e|χ |M − 1)εr + e|χ |M {|χ |M2|A0|e|χ |M + εr(e
|χ |M − 1)

+ 2εr(e
|χ |M − 1) + (e|χ |M − 1)(2|A0|M + 2εr)}

≤ (e|χ |M − 1)(εr + 5εre
|χ |M + 2|A0|e|χ |MM)

+ |A0| |χ |M2e2|χ |M, (75)

which holds for all χ , even for χ = 0, due to the choice of (72). This proves the last
estimate (68). �

5.2. The iterative construction. To finish the proof we must show that the iterative
process that was started at the beginning of the section can be continued up to any order
(by suitably choosing the right domains) and that this process is convergent. As the first
step of an iterative process define

P 0(θ, η0) = P(θ),

which is analytic in the complex strip |Im θ | < ρ0. Having fixed this constant, we will
define sequences (ρr )r , (δr)r , (εr )r and (σr )r such that the inductive lemma can be applied
up to any finite order and which guarantee the existence of the constant ξ∗ and the reducing
transformation that we will call Z∗.

Take

ρr = ρ0

(
1

2
+ 1

2r+1

)
, ρr+1 = ρr − δr , δr = ρ0

2r+2
, r ≥ 0
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as the sequences that will define the successive domains for the angles θ . In order to
overcome the problems caused by the presence of small divisors, we define the sequences
(εr)r and (σr )r as

εr+1 = ε
3/2
r , εr = ε

(3/2)r

0 , σr+1 = εr, r ≥ 0

and σ0 = ε
2/3
0 , which will be completely determined once we fix the initial ε0. In order

to do so, we first state the inequalities that we want the sequences (ρr )r , (δr)r , (εr)r and
(σr )r to satisfy. In the notation of the inductive lemma, the conditions we impose are

εr < Kσr, r ≥ 0, (76)

M = c
εr

δν
r

< ε
1/2
r , r ≥ 0 (77)

and

(e|χ |M − 1)(εr + 5εre
|χ |M + 2|A0|e|χ |MM) + |A0| |χ |M2e2|χ |M < ε

3/2
r , r ≥ 0. (78)

Now we must choose ε0 so that these conditions are satisfied.

Choice of ε0. The choice of ε0 will be very conservative. First of all, condition (76) is
equivalent to

εr

εr−1
= ε

1/2(3/2)r−1

0 < K, r ≥ 0,

provided that we set ε−1 = ε
2/3
0 for consistency. The conditions for r ≥ 0 hold if

ε0 < K3, (79)

because K < 1/4. Writing (77) in terms of ε0 and ρ0 we obtain

c

(
4

ρ0

)ν

· 2rνε
1/2(3/2)r

0 < 1,

which holds choosing

ε0 < min

(
exp

(
ν log(1/4)

log(3/2)

)
,

1

c2

(
ρ0

4

)2ν)
. (80)

Finally using that, by the above assumptions, M < ε
1/2
r (which is less than one), we can

estimate the left-hand side of (78) as follows

(e|χ |M −1)(εr +5εre
|χ |M +2|A0|e|χ |MM)+|A0| |χ |M2e2|χ |M = C1Mεr +C2M

2, (81)

with

C1 = e|χ ||χ |(1 + 5e|χ |)

and

C2 = 3|A0| |χ |e2|χ |,
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where we have used that M < 1. Since we want the right-hand side of (81) to be smaller
than ε

3/2
r , we need to impose extra conditions, in addition to (79) and (80). Indeed, writing

the definition of M , condition (78) holds if

C1c
ε2
r

δν
r

+ C2c
2 ε2

r

δ2ν
r

< ε
3/2
r ,

which is equivalent to

C1c
ε

1/2
r

δν
r

+ C2c
2 ε

1/2
r

δ2ν
r

< 1.

The left-hand side of this expression is bounded by

C1c
ε

1/2
r

δν
r

+ C2c
2 ε

1/2
r

δ2ν
r

< cε
1/2
r 4rν

(
C1

(
4

ρ0

)ν

+ C2c

(
4

ρ0

)2ν)
.

This expression is less than one (which implies condition (78)) if we take

ε0 < min

(
exp

(
2ν log(1/4)

log(3/2)

)
,

1

C2
3

)
, (82)

where

C3 = c

(
C1

(
4

ρ0

)ν

+ C2c

(
4

ρ0

)2ν)
.

Therefore, taking ε0 satisfying the bounds (79), (80) and (82) the estimates (76)–(78)
follow for all r ≥ 0.

The iterative process. Once we have chosen ε0, the sequences (εr )r and (σr )r are defined
and the inductive lemma can be applied up to any finite order to obtain analytic maps

Xr : Dr+1 → g and Zr = exp(χXr),

P r+1 : Dr+1 → g

and

ξr : D(0, σr+1) → D(0, 2σr+1) ⊂ D

(
0,

σr

2

)
,

which satisfy the homological equation (66) with the estimates

|P r+1|Dr+1 < ε
3/2
r = εr+1,

|Dηr+1ξr |εr < 1 + c1ε
1/2
r−1 = 1 + c1σ

1/2
r ,

|Xr |Dr+1 < ε
1/2
r ,

(83)

for r ≥ 0. Writing
ξr = ξr−1 ◦ ξr = ξ0 ◦ ξ1 ◦ · · · ◦ ξr ,

which is a real analytic map on B(0, σr+1), and

Zr(θ, ηr+1) = Zr−1(θ, ξ r (ηr+1)) · Zr(θ, ξr (ηr+1)), (θ, ηr+1) ∈ Dr+1,
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which is also G-real analytic, we obtain, for all r ≥ 0, the equation

∂ωZr(θ, ηr+1) = χk(A0+χP 0(θ)−χξr(η
r+1))Zr−Zrχ

k(A0+χP r+1(θ, ηr+1)−χηr+1)

for (θ, ηr+1) ∈ Dr+1. To prove the conjugation

∂ωZ∗(θ, 0) = χk(A0 + χP 0(θ) − χξ∗(0))Z∗ − Z∗χkA0,

for |Im θ | < ρ0/2, we only need to show that the sequences (Zr)r and (ξr )r converge
uniformly on D∗ = limr→∞ Dr to Z∗ and ξ∗ respectively, because from the estimates
(83) the perturbations (P r)r converge to zero on D∗.

Existence of ξ∗. The desired ξ∗ will be the limit of the sequence (ξr (0))r . First of all
note that if the limit exists, then it will belong to g and satisfy the identity C(ξ∗) = ξ∗ and
the bound |ξ∗| ≤ 2ε0, as this holds for all r ≥ 0. Now let us prove the convergence of the
sequence.

Using the estimates (83)

|ξr+1(0) − ξr (0)| = |ξr (ξ
r+1(0)) − ξr (0)| ≤ |Dξr |σr+1 |ξr+1(0)| < |Dξr |σr+1σr+1.

As ξr = ξr−1 ◦ ξr , then

Dξr (η
r+1) = (Dξr−1)(ξ

r (ηr+1))(Dξr )(ηr+1),

so, if |ηr+1| < σr+1,

|Dξr |σr+1 ≤ |Dξr |σr+1 · |Dξr−1|σr · · · · · |Dξ1|σ2 · |Dξ0|σ1

≤ (1 + c1σ
1/2
r )(1 + c1σ

1/2
r−1) · · · · · (1 + c1σ

1/2
1 )(1 + c1σ

1/2
0 )

≤
∞∏

j=0

(1 + c1σ
1/2
j )

≤ exp

( ∞∑
j=0

(c1σ
1/2
j )

)
< exp(2c1σ

1/2
0 ) < ∞

because, by (76), σr+1/σr < K < 1/4, so that

∞∑
j=0

σ
1/2
j <

∞∑
j=0

σ
1/2
0

2j
= 2σ

1/2
0 .

Therefore, (ξr (0))r is a Cauchy sequence and it converges to ξ∗ ∈ g, with C(ξ∗) = ξ∗.

Existence of Z∗. We follow the same idea to prove the existence of ξ∗. As

Zr(θ, ηr+1) = Zr−1(θ, ξr (ηr+1))Zr(θ, ξr (ηr+1)), (θ, ηr+1) ∈ Dr+1

for r ≥ 1 and

Z0(θ, η1) = Z0(θ, ξ0(η1)),
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then, for |Im θ | < ρ0/2,

|Zr+1(θ, 0) − Zr(θ, 0)|
= |Zr(θ, ξr+1(0))Zr+1(θ, ξ r+1(0)) − Zr(θ, 0)|
= |Zr(θ, ξr+1(0)) − Zr(θ, 0) + Zr(θ, ξr+1(0))(Zr+1(θ, ξ r+1(0)) − I)|
≤ |Zr(θ, ξr+1(0)) − Zr(θ, 0)| + |Zr(θ, ξr+1(0))| · |Zr+1(θ, ξ r+1(0)) − I |.

We now estimate all of these terms:

|Zr+1(θ, ξr+1(0)) − I | ≤ exp(|χ ||Xr+1|Dr+2) − 1 ≤ 2|χ |ε1/2
r+1 = 2|χ |σ 1/2

r ,

|Zr(θ, ξr+1(0))| ≤
∞∏

j=0

exp(|χ |ε1/2
j ) = exp

( ∞∑
j=0

|χ |ε1/2
j

)
< exp(2|χ |ε1/2

0 ) < ∞,

|Zr(θ, ξr+1(0)) − Zr(θ, 0)| ≤ |Dηr+1Zr |Dr+1|ξr+1(0)|.
We now need a bound for |Dηr+1Zr |Dr+1 . To find this we will apply Cauchy estimates

|Dηr+1Zr |Dr+1 = |Dηr+1(Zr−1(·, ξ r (·))Zr(·, ξ r (·)))|Dr+1

≤ |Dηr (Zr−1Z
r)|{|Im θ |<ρr+1}×{|ηr |<2σr+1}|Dξr |σr+1

≤ c′

σr/2 − 2σr+1
|Zr−1Z

r |Dr+1 |Dξr |σr+1

≤ 2c′

σr − 4σr+1
|Zr−1|Dr

| exp(χXr)|Dr+1 |Dξr |σr+1

≤ 2c′

σr − 4σr+1
exp(2|χ |ε1/2

0 ) exp(|χ |σ 1/2
r+1)(1 + c1σr

1/2)

<
c2

σr − 4σr+1
,

where c2 is a new constant. Therefore,

|Zr(θ, ξr+1(0)) − Zr(θ, 0)| <
2c2σr+1

σr − 4σr+1
= 2c2σ

3/2
r

σr − 4σ
3/2
r

= 2c2σ
1/2
r

1 − 4σ
1/2
r

≤ c3σ
1/2
r ,

c3 being another constant. Collecting all of these bounds,

|Zr+1(θ, 0) − Zr(θ, 0)| < (c3 + 2|χ | exp(2|χ |ε1/2
0 ))σ

1/2
r ,

which implies that (Zr(·, 0))r is a Cauchy sequence on |Im θ | < ρ0/2 and therefore it
converges to some Z∗ on D∗. Moreover, as

|Z∗|D∗ < exp

(
χ

∑
r≥1

|χr |Dr

)
< exp(χc̃(ν)ε0ρ

−ν
0 ) (84)

and ε0 < 1, there exists a real analytic map X∗ : D∗ → g, with |X∗|D∗ < c̃(ν)ε0ρ
−ν
0 ,

such that Z∗ = exp(χX∗). For the second bound in (84) we have used (67) for r = 1 and
(83) for r > 1. This ends the proof of Theorems 4 and 11 disregarding the dependence on
external parameters.
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Analytic dependence on µ. Up to now we have proved theorems 4 and 11 disregarding the
dependence with respect to the external parameters µ. First of all note that these proofs (not
yet considering the dependence on µ) can be extended to apply to analytic P : Td → gC

such that

|P |ρ0 < ε0, (85)

and to complex χ with |χ | ≤ 1 (in the case of Theorem 11). Here gC stands for the
complexification of the Lie algebra g. Elements of gC are of the form P1 + iP2, where P1

and P2 belong to g. The bound of (85) holds because the admissibility of (A0, C, S, ω)

(respectively, (χkA0, C, S, ω)) implies that the equations

∂ωX(θ) = χk([A0,X(θ)] + P(θ) − C(P )), X = S(P ),

for P : Td → gC with analytic extension to |Im θ | < ρ0, have a unique analytic solution
X : Td → gC that satisfies the estimates

|X|ρ0−δ ≤ c
|P |ρ0

δν

for all 0 < δ ≤ ρ. With this in mind it can be checked that all the other parts of the proof
hold.

Let us now consider the dependence with respect to µ. That is, assume that both P

and χ depend real analytically on µ in a certain ball around the origin. Again, we deal
with Theorems 4 and 11 at the same time. The reader interested only in Theorem 4 can
replace χ by 1.

Let ν > 0 such that, if |µ| < ν, then |P(·, µ)|ρ < ε and |χ(µ)| < 1. For these complex
values of µ there exist ξ∗(µ) ∈ gC (with C(ξ∗(µ)) = ξ∗(µ) and ξ∗(µ) ∈ g for real
values of µ) and X(·, µ) : Td → gC, with analytic extension to |Im θ | < ρ/2 such that
Z(θ,µ) = exp(χ(µ)X(θ, µ)) satisfies

∂ωZ(θ, µ) = χ(µ)k(A0 + χ(µ)P (θ, µ) − χ(µ)ξ∗(µ))Z(θ, µ) − Z(θ,µ)χ(µ)kA0,

for |Im θ | < ρ/2 and |µ| < ν. Moreover, if µ is real then P is real analytic in θ and
belongs to g, so ξ∗(µ) ∈ g and X(θ,µ) ∈ g for real θ . Therefore, we need to show that
the dependence of these objects on µ is analytic on |µ| < ν.

To see this, note that the transformations constructed in the inductive lemma can be
made analytic on Dr × {|µ| < ν}. For this, it is essential to define P r+1 when χ = 0 as
(72) to avoid a discontinuity. As the final solution is obtained as the uniform limit (in the
complex domain D∗ × {|µ| < ν}) of the approximations, the limits are analytic there. �
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A. Appendix. Multiple internal–external resonances
In this paper we have considered the existence of analytic families of reducible linear quasi-
periodic equations with frequency ω and Floquet matrix A0 satisfying the Diophantine
condition (20),

inf
λ∈Spec(ad)A0

|λ − i〈k, ω〉| ≥ K

|k|τ , k ∈ Z
d, k = 0,

for some positive constants K, τ . This assumption does not cover the case of multiple
resonances, which happens when the previous condition holds for all values of k ∈ Zd

except for a finite set of multi-integers. Theorem 4 (and also Theorem 11) can be adapted
to the case of multiple resonances, provided suitable conditions are imposed.

We first of all we impose a less restrictive Diophantine condition on the eigenvalues of
adA0 and ω. Assume that there exist positive constants c, ν > 0 and a finite set R ⊂ Zd

such that the estimate

inf
λ∈Spec(adA0 )

|λ − i〈k, ω〉| ≥ K

|k|τ , (86)

holds for all k ∈ Zd − R. In particular, zero must belong to this resonant set R.
Second, let us introduce the generalization of the operators S and C. We assume that for

all k ∈ R there exist linear operators Sk, Ck of gC such that C2
k = Ck and, for all P ∈ gC,

the identity
i〈k, ω〉Sk(Pk) = [A0, Sk(Pk)] + Pk − Ck(Pk) (87)

holds. Under these two hypothesis, Theorem 4 has to be modified only in the following
way. For k ∈ R there exist ξ∗

k ∈ gC, with Ck(ξ∗
k ) = ξ∗

k , such that the modified system is

x ′ = χk

(
A0 + P(θ) −

∑
k∈R

ξ∗
k exp(i〈k, θ〉)

)
x, θ ′ = ω (88)

instead of (14).
Nevertheless, in several practical situations it turns out that it is not needed to make

use of this extended version of the theorem, because some preliminary transformations can
be performed so that resonances for values of k different from zero are removed and the
resonance of zero has a higher multiplicity (see also [MP84, Eli02, Eli01] and [Kri99a]).

To illustrate this procedure consider a perturbed system

x ′ = (A0 + P(θ,µ))x, θ ′ = ω (89)

for which the adjoint operator adA0 : g → g has rational eigenvalues with respect to ω.
Assume that we can find matrices Ad

0 , Ar
0 ∈ g such that:

(i) A0 = Ad
0 + Ar

0;
(ii) Ad

0 and ω satisfy the Diophantine condition (20);
(iii) the map t �→ exp(tAr

0) is quasi-periodic with frequency ω/2; denote by Z its lift
to Td .

If these conditions are fulfilled (an example of this appears in §3) then, the transformation

x = exp(tAr
0)y
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sends system (89) to

y ′ = (Ad
0 + Q(θ,µ))y, θ ′ = ω,

where

Q(θ,µ) = Z(θ)−1P(θ,µ)Z(θ),

which is quasi-periodic with frequency ω and we are under the conditions of Theorem 4.

B. Appendix. The case of reversible systems
In practical situations, given a linear differential equation on some Lie algebra, there can
be additional symmetries to be taken into account. In this case it is interesting to know
whether we can use these symmetries to deduce more properties of the counterterm C,
essentially reducing the dimension of the space C(ξ) = ξ in the algebra g. In this section
we focus on the reversible case (see [BHS96] and references therein).

Definition 30. Given an element R ∈ GL(n, R), with R2 = I , we will say that a map
Q : R → g is R-reversible, whenever

Q(−t)R = −RQ(t)

for all t ∈ R.

In presence of such a symmetry, the solutions of a linear differential equation have the
following properties

PROPOSITION 31. Consider a reversibility with respect to the involution R. Let g ⊂
gl(n, R) a Lie sub-algebra. Then the following are true.
(i) Let A0 ∈ g, Q : R → g, both R-reversible, and let X : R → g, smooth, such that

X′(t) = [A0,X(t)] + Q(t)

for all t ∈ R. Then

X(−t)R = RX(t)

for all t ∈ R.
(ii) If X : R → g satisfies X(−t)R = RX(t) for all t ∈ R, then Z(t) = exp(X(t)) also

does:

Z(−t)R = RZ(t).

(iii) If A,X : R → g satisfy that X(−t)R = RX(t), A(−t)R = −RA(t) and the
conjugacy

Z′(t) = A(t)Z(t) − Z(t)B(t),

with Z(t) = exp(X(t)), B(t) ∈ g holds for all t ∈ R, then B is R-reversible:

B(−t)R = −RB(t)

for all t ∈ R.
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Proof. The first item follows from the identities

(RX(t)R)′ = −([A0, RX(t)R] + Q(t)), (X(−t))′ = −([A0,X(−t)] + Q(t)).

As RX(t)R and X(−t) satisfy the same differential equation and they coincide for t = 0,
then

RX(t)R = X(−t)

for all t ∈ R and the first statement follows. Item (ii) is a direct consequence of the
definition of the exponential of a matrix. To prove (iii) we first note that Z′(t) is R-
reversible and, as

B(t) = Z−1(t)A(t)Z(t) − Z(t)−1Z′(t),
then B(t) must be R-reversible because Z−1 satisfies

Z−1(−t)R = RZ−1(t)

for all t ∈ R. �

With this proposition in mind one can modify Theorems 4 and 11 to obtain additional
symmetries of the counterterm C. Here we give only the adaption of Theorem 4 to the
reversible case.

THEOREM 32. Assume that, in addition to the hypothesis of Theorem 4, there is an
involution R ∈ GL(n, R) such that

A0R = −RA0

and
C(ξ)R = −RC(ξ) S(ξ)R = RS(ξ) (90)

hold for all R-reversible ξ ∈ g. Then, if P is R-reversible, the element ξ∗ ∈ g is also
R-reversible,

ξ∗R = −Rξ∗,
and the conjugation X satisfies

X(−θ)R = RX(θ)

for all θ ∈ Td .

As an application, in Hill’s equation with quasi-periodic forcing, assume that the quasi-
periodic forcing q is even in t , i.e. it satisfies that q(t) = q(−t) for all t ∈ R. Then the
matrix function

t �→
(

0 1
−(a + bq(t)) 0

)

is reversible with respect to the involution

R =
(

1 0
0 −1

)
.

Following the construction in §2, the operators C and S clearly satisfy the identities (90).
Therefore, the counterterm ξ∗(µ) is also R-reversible and, thus ξ∗

11(µ) = 0, so that the
persistence of a collapsed gap is given by the two equations

ξ∗
12(µ) = ξ∗

21(µ) = 0.
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C. Appendix. A numerical example
A large set of numerical illustrations of the boundaries of the tongues for Hill’s quasi-
periodic coefficients like (24) can be found in [BS98]. They have been obtained from
computations of maximal Lyapunov exponent and rotation number for a set of values of a

and b. In this reference one can also find details about how to carry out the computations
and an interpretation of the results. In fact, the present paper has been largely motivated
by the results in [BS98].

Here we show an additional example which concerns the optimality of the results given
in §4. In that section we have considered the boundary between a totally hyperbolic
situation and another that has just one elliptic mode, the remaining situations being
hyperbolic. One can ask if transitions to cases with a higher ellipticity can have analytic
boundaries. The example we present here is evidence that this is not the case.

Let us consider the following system

ẋ =




0 0 1 0
0 0 0 1

f1(t) 0 0 −2
0 f2(t) 2 0


 x, (91)

where
f1(t) = λ1(1 + e cos(ωt)), f2(t) = λ2(1 + e cos(t)). (92)

The parameters in (91) are λ1, λ2, e and the frequency ω. A system like (91), with
more involved functions than those shown in (92), appears in the periodic case (ω = 1)
in the study of the stability of homographic solutions of the three-body problem with
homogeneous potentials (see [MSS03, MSS06] and references therein). The parameters
λ1 and λ2 depend on the masses, m1,m2,m3, of the three bodies and on the degree of
homogeneity, −α, of the potential. The parameter e denotes a generalized eccentricity.

For some ranges of m1,m2,m3, α there are invariant tori around the homographic
solutions (in a suitable rotating frame). In that case the variational equations along these
tori can be reduced to the form (91).

For this example we show some results concerning changes of stability for λ2 = −4, the
frequency fixed to ω = (1 + √

5)/2 while λ1 and e are considered as varying parameters.
Note that e acts as a perturbation parameter. For e = 0 (91) has constant coefficients.
Hence (λ1, e) play a role similar to (a, b) in Hill’s equation.

For these parameters in the range [−4, 0]×[0 : 1] with stepsize 10−3, we have computed
the two dominant Lyapunov exponents µ1, µ2. Using the change

u =




1 0 0 0
0 1 0 0
0 1 1 0

−1 0 0 1


 x,

system (91) becomes Hamiltonian with

H(u, t) = 1
2 ((1 − f1(t))u

2
1 + (1 − f2(t))u

2
2 + u2

3 + u2
4) + u1u4 − u2u3.

Hence, the remaining Lyapunov exponents are obtained from µ3 = −µ1, µ4 = −µ2.
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FIGURE C2. Stability properties of (91) with fj defined in (92) as a function of λ1 (horizontal variable) and e

(vertical variable), for λ2 = −4, ω = (1 + √
5)/2. Colour code: µ1 = µ2 = 0 as EE, µ1 > 0, µ2 = 0 as EH,

µ1 > µ2 > 0 as HH, µ1 = µ2 > 0 as CS.

To compute the Lyapunov exponents a method to accelerate the convergence has been
used. It is different from the one used in [BS98]. The method has been introduced in
[CGS03] and additional details can be found in [LSSW03].

Figure C2 presents an overview of the results. Different regions in the plot correspond
to different behaviour of the first two Lyapunov exponents, as described in the caption.
Replacing ω by a rational approximant the problem reduces to a periodic case and a similar
picture is obtained. Then the different grey tones correspond, generically, to elliptic–
elliptic, elliptic–hyperbolic, hyperbolic–hyperbolic and complex saddle (or EE, EH, HH,
CS for short) as shown in C2, respectively.

The largest EH zone, which opens from e = 0 near λ1 = −1.5, has boundaries which
are of elliptic–parabolic type in the periodic case. In the quasi-periodic one resonances
due to the presence on an elliptic part in the boundary can occur. They can be seen as the
narrow near-vertical strips of the HH zones. Whereas in the periodic case there is a finite
set of such strips, in the quasi-periodic setting they appear in a dense way, despite being
individually narrow. This destroys the analyticity of the boundary between EE and EH.

A magnification of the left boundary, which roughly separates the EE and EH domains
for this resonance, is shown in Figure C3. The vertical scale has been deformed so that this
boundary becomes roughly horizontal. The point where the tongue opens from e = 0 can
be seen to the right. The white area corresponds to e < 0.
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FIGURE C3. A magnification of Fig. C2 followed by a deformation of the vertical variable. The left boundary of
the largest EH zone in the previous figure is here seen as roughly horizontal, close to the value 0. Colour code as

in Fig. C2.
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FIGURE C4. Magnification of one of the infinitely many near-vertical strips of HH type inside the EH region and
entering the EE region to become HE. The window is [−1.77655, −1.77555] × [0.3266, 0.3276]. This is one of

the largest strips. Colour code as in the previous figures.
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Finally Figure C4 shows a magnification (again in (λ1, e) variables) of part of the
very narrow almost vertical strip which can be seen in Figure C3 close to λ1 = −1.8.
Infinitely many of these strips have to be found across the figures. Note that as only the
Lyapunov exponents have been computed, there is not enough information to detect the
non-reducible systems.

REFERENCES

[AS83] J. Avron and B. Simon. Almost periodic Schrödinger operators II. The integrated density of states.
Duke Math. J. 50 (1983), 369–391.

[BHS96] H. W. Broer, G. B. Huitema and M. B. Sevryuk. Quasi-periodic Motions in Families of Dynamical
Systems. Springer, Berlin, 1996.

[BL95] H. W. Broer and M. Levi. Geometrical aspects of stability theory for Hill’s equations. Arch.
Rational Mech. Anal. 131(3) (1995), 225–240.

[BMS76] N. N. Bogoljubov, J. A. Mitropoliskii and A. M. Samoı̆lenko. Methods of Accelerated Convergence
in Nonlinear Mechanics. Hindustan Publishing, Delhi, 1976.

[Bou97] J. Bourgain. On Melnikov’s persistency problem. Math. Res. Lett. 4(4) (1997), 445–458.
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