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Abstract. We present some results concerning the Cantor structure of the spec-
trum of quasi-periodic Schrödinger operators. These are obtained studying the dy-
namics of the corresponding eigenvalue equations, specially the notion of reducibil-
ity and Floquet theory. We will deal with the Almost Mathieu case, and the solution
of the “Ten Martini Problem” for Diophantine frequencies, as well as other models.1

In recent years there has been substantial progress in the understanding
of the structure of the spectrum of Schrödinger operators with quasi-periodic
potential. Here we will concentrate on one-dimensional, real analytic quasi-
periodic potentials with one or more Diophantine frequencies.

We will begin with the best studied of such operators: the Almost Math-
ieu operator and the solution of the “Ten Martini Problem” which asks for
the Cantor structure of its spectrum. Secondly we will see how this Cantor
structure is generic in the set of quasi-periodic real analytic potentials. We
will end introducing a different approach to this problem which is helpful to
study the phenomenon of “gap opening”.

1 The Almost Mathieu Operator
& the Ten Martini Problem

The Almost Mathieu operator is probably the best studied model among
quasi-periodic Schrödinger operators. It is the following second-order differ-
ence operator:

(HAM
b,ω,φx)n = xn+1 + xn−1 + b cos(2πωn + φ)xn, n ∈ Z , (1)

where b is a real parameter (a coupling parameter, since for b = 0 the operator
is trivial), ω is the frequency, which we assume to be an irrational number (in
most of what follows, also Diophantine) and φ ∈ T = R/(2πZ) will be called
the phase.

1 This work was done while the author was at the Departament de Matemàtica
Aplicada i Anàlisi of the Universitat de Barcelona. It has been supported by grants
DGICYT BFM2003-09504-C02-01 (Spain) and CIRIT 2001 SGR-70 (Catalonia).
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Considered as an operator on l2(Z), the Almost Mathieu operator is
bounded and self-adjoint. The reason for its name comes from the fact that
its eigenvalue equation, namely

xn+1 + xn−1 + b cos(2πωn + φ)xn = axn, n ∈ Z ,

(sometimes called Harper’s equation), is a discretization of the classical Ma-
thieu equation,

x�� + (a + b cos(t)) x = 0 .

which is a second-order periodic differential equation (see Ince [9]). The analo-
gies between the Harper equation and Mathieu equation are quite striking
and their comparison illustrates the differences between periodic and quasi-
periodic Schrödinger operators.

1.1 The ids and the Spectrum

The Integrated Density of States (ids) is a very convenient object for the
description of the spectrum of quasi-periodic Schrödinger operators which
can be extended to more general operators. Here we introduce it in the case
of the Almost Mathieu operator for the sake of concreteness.

Fix some b ∈ R and φ ∈ T. For any L ∈ N we define HAM,L
b,ω,φ as the

restriction of the Almost Mathieu operator to the interval {1, . . . , L − 1}
with zero boundary conditions at 0 and L. Let

kAM,L
b,ω,φ (a) =

1
(L − 2)

#
�

eigenvalues of HAM,L
b,ω,φ ≤ a

�
.

Then Avron & Simon [2] prove that

lim
L→∞

kAM,L
b,ω,φ (a) = kAM

b,ω (a) ,

which is called integrated density of states, ids for short. This limit is in-
dependent of the value of φ and it is a continuously increasing function
of a.

The ids can be used to describe the spectrum of quasi-periodic Schrödinger
operators in a very nice way. Indeed, the spectrum of HAM

b,ω,φ is precisely the
set of points of increase of the map

a �→ kAM
b,ω (a)

so that the intervals of constancy belong to the resolvent set of the operator
(and are called the spectral gaps). In particular, this characterization shows
that the spectrum of the Almost Mathieu operator (and in general any quasi-
periodic Schrödinger operator with irrational frequencies) does not depend
on φ. Therefore, we write

σAM
b,ω = Spec

�
HAM

b,ω,φ

�
.
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Remark 1. The ids for one-dimensional quasi-periodic Schrödinger operators
has many other characterizations. It can be linked to the rotation number of
the corresponding eigenvalue equation. This object was introduced by John-
son & Moser [12] in the continuous case (see Delyon & Souillard [7] for the
adaption to the discrete case and Johnson [11] for a review on these different
characterizations).

The ids can also be used to “label” the spectral gaps of the Almost
Mathieu operator. This is the contents of the Gap Labelling Theorem, by
Johnson & Moser [12]: if I is a spectral gap (an interval of constancy of the
ids) then there is an integer n ∈ Z such that

kAM
b,ω (a) = nω, (modulus Z)

for all a ∈ I. Figure 1 displays the gap labelling for the Almost Mathieu
operator at “critical coupling” b = 2.
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Fig. 1. Schematic view of Gap Labelling for HAM
2,ω,φ and b = 2. The ids is plot as

a function of a. Integers in the vertical direction correspond to values n such that
the ids equals nω modulus Z

The Gap Labelling Theorem motivates the following definitions. For any
n ∈ Z let

I(n) =
�
a ∈ R; kAM

b,ω (a) − nω ∈ Z}
�

.

If I(n) = [an
−, an

+] for some an
− < an

+ then we will say that (an
−, an

+) is a non-
collapsed or open spectral gap. If an

− = an
+ then we will call {an

−} a collapsed
or closed spectral gap. Note that noncollapsed spectral gaps are subsets of
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the resolvent whereas collapsed spectral gaps belong to the spectrum. In both
cases, the endpoints of gaps belong to the spectrum.

In the quasi-periodic case, when ω is an irrational frequency, the possible
values of the ids at gaps define the set of labels

M(ω) = {m + nω, n,m ∈ Z} ∩ [0, 1] ,

which is dense in [0, 1]. Since the ids is a continuously increasing function of
a, the spectrum of the Almost Mathieu operator is a Cantor set if all spectral
gaps are open. For a general quasi-periodic Schrödinger operator, gaps can be
collapsed and, in fact, the spectrum may contain intervals. Figure 2 displays a
numerical computation of some of the gaps of the Almost Mathieu operator.
None of them appears to be collapsed.
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Fig. 2. Numerical computation of the ten biggest spectral gaps for the Almost
Mathieu operator. Coupling parameter b is in the vertical direction, whereas the
spectral one a is in the horizontal one. Shaded regions correspond to gaps

Due to all this, and to some physical arguments, Simon [18], after an
offer by Kac, posed the following problems on the Cantor structure for the
spectrum of the Almost Mathieu operator. The first one is the “Ten Martini
Problem”: for ω irrational and b �= 0 prove that the spectrum of the Almost
Mathieu operator is a Cantor set. The second one, which implies the first, is
the “Strong (or Dry) Ten Martini Problem” and, under the same hypothesis,
asks if all gaps, as predicted by the Gap Labelling Theorem, are open.

Concerning the Ten Martini Problem, we can prove the following [14].

Corollary 1. Assume that ω ∈ R is Diophantine, that is, there exist positive
constants c and r > 1 such that
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|sin 2πnω| >
c

|n|r

for all n �= 0. Then, the spectrum of the Almost Mathieu operator, σAM
b,ω , is

a Cantor set if b �= 0,±2.

Remark 2. Very recently Avila & Jitomirskaya have proved Cantor structure
for all irrational frequencies. The set of Diophantine frequencies is a total
measure subset of the real numbers.

Concerning the dry version of the Ten Martini Problem, using a reducibil-
ity theorem by Eliasson [8], one can also say something in the perturbative
regime [14]

Corollary 2. Let ω ∈ R be Diophantine. Then, there is a constant C =
C(ω) > 0 such that if 0 < |b| < C or 4/C < |b| < ∞ all the spectral gaps of
σAM

b,ω are open.

In the remaining of this section we will sketch the reason why Corollary 1 is
an (almost) direct consequence of the following nonperturbative localization
result due to Jitomirskaya [10].

Theorem 1. Let ω be Diophantine. Then, if |b| > 2 the operator HAM
b,ω,0 has

only pure point spectrum with exponentially decaying eigenfunctions.

1.2 Sketch of the Proof

Let b > 2 and ω Diophantine. Jitomirskaya proves that, in this case, HAM
b,ω,0

has pure-point spectrum with exponentially decaying eigenfunctions. In par-
ticular (and this is everything that we will need from her result), there exists
a dense subset in σAM

b,ω of point eigenvalues of HAM
b,ω,0 whose eigenvectors are

exponentially localized. Let a be one of these eigenvalues and ψ = (ψn)n∈Z
its exponentially localized eigenvector. We are going to see that a is the end-
point of a noncollapsed spectral gap. From this the Cantor structure of the
spectrum follows immediately.

By hypothesis a ∈ σAM
b,ω and ψ ∈ l2(Z) satisfy the Harper equation

ψn+1 + ψn−1 + b cos(2πωn)ψn = aψn, n ∈ Z ,

with some constants A, β > 0 such that

|ψn| ≤ A exp(−β|n|), n ∈ Z .

The very special form of the Almost Mathieu operator makes that the
Fourier transform of ψ,

ψ̃(θ) =
�

n∈Z
ψneinθ, θ ∈ T ,
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which is real analytic in |Imθ| < β, defines the following quasi-periodic Bloch
wave

xn = ψ̃ (2πωn + θ) , n ∈ Z ,

and that this, satisfies the equation

(xn+1 + xn−1) +
4
b

cos(2πωn + θ)xn =
2a

b
xn, n ∈ Z . (2)

for any θ ∈ T. Note that this is again a Harper equation whose parameters
have changed

(a, b) �→
�

2a

b
,
4
b

�
.

This invariance of the Almost Mathieu operator under Fourier transform
is known as Aubry duality [1]. Although the argument above requires the
existence of a point eigenvalue, Avron & Simon [2] proved the following form
of Aubry duality in terms of the ids

kAM
b,ω (a) = kAM

4/b,ω

�
2a

b

�
.

In particular, if we prove that 2a/b is the endpoint of a noncollapsed gap of
σAM

4/b,ω we are done.

1.3 Reducibility of Quasi-Periodic Cocycles

Our main tool will be to use the dynamics of the eigenvalue equation (2) to
prove that a is an endpoint of a non-collapsed gap. To do so, it is convenient
to write down (2) as a first order system

�
xn+1

xn

�
=

�
2ak

b − 4
b cos θn −1
1 0

� �
xn

xn−1

�
, θn+1 = θn + 2πω , (3)

with θn ∈ T. Such first-order systems are usually called quasi-periodic skew-
products. The evolution of the vector vn = (xn+1, xn)T and the angle θn can
be seen as the iteration of a quasi-periodic cocycle on SL(2, R) × T

(v, θ) ∈ R2 × T �→
�
AAM

2a/b,4/b,ω(θ), ω)
�

(v, θ) =
�
AAM

2a/b,4/b,ω(θ)v, θ + 2πω
�

,

setting

AAM
2a/b,4/b,ω(θ) =

�
2a
b − 4

b cos θ −1
1 0

�
.

That is,

vn+1 =
�

2a
b − 4

b cos(2πωn + φ) −1
1 0

�
· · ·

�
2a
b − 4

b cos(φ) −1
1 0

�
· v0
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and
θn = 2πωn + θ0 .

When the frequency ω is rational the skew-product is periodic and, thanks
to Floquet theory, it can be reduced to a skew-product with constant matrix
by means of a periodic transformation. Quasi-periodic reducibility tries to
extend this theory to the quasi-periodic case. Let us now introduce some
basic notions.

Two cocycles (A,ω) and (B, ω) of SL(2, R)×T (not necessarily associated
to the Harper equation) are conjugated if there exists a continuous Z : T →
SL(2, R) such that

A(θ)Z(θ) = Z(θ + 2πω)B(θ), θ ∈ T .

In this case the corresponding quasi-periodic skew-products

un+1 = A(θ)un, θn+1 = θn + 2πω

and
vn+1 = B(θ)vn, θn+1 = θn + 2πω

are conjugated through the change u = Zv.
Particularly important to our purposes is the case of cocycles which are

conjugated to a constant cocycles. A cocycle (A, ω) is reducible to constant
coefficients if it is conjugated to a cocycle (B, ω) with B not depending on θ.

Remark 3. B is called the Floquet matrix. Neither B nor Z are unique.

The fundamental solution of a reducible system Xn(φ) has the following
Floquet representation:

Xn(φ) = Z(2πnω + φ)BnZ(φ)−1X0(φ) . (4)

In particular, and this is an important observation, if B = I then all solutions
of the corresponding skew-product are quasi-periodic with frequency ω. If the
cocycle comes from a Harper’s equation, then all the solutions of this equation
are quasi-periodic Bloch waves.

Now let us go back to our dual Harper’s equation. In terms of ψ̃ we have
that the relation

�
ψ̃(4πω + θ)
ψ̃(2πω + θ)

�
=

�
2a
b − 4

b cos θ −1
1 0

��
ψ̃(2πω + θ)

ψ̃(θ)

�

holds for all θ ∈ T. The following Lemma shows that, in this situation, the
Almost Mathieu cocycle is reducible to constant coefficients.

Lemma 1. Let A : T → SL(2, R) be a real analytic map and ω be Diophan-
tine. Assume that there is a nonzero real analytic map v : T → R2, such that
the relation
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v(θ + 2πω) = A(θ)v(θ)

holds for all θ ∈ T. Then, the quasi-periodic cocycle (A, ω) is reducible to
constant coefficients by means of a quasi-periodic transformation which is
real analytic. Moreover the Floquet matrix can be chosen to be of the form

B =
�

1 c
0 1

�
(5)

for some c ∈ R.

1.4 End of Proof

Classical Floquet theory for periodic Hill’s equation relates endpoints of gaps
to the corresponding Floquet matrices (which always exist because the system
is periodic). It turns out that, if an Almost Mathieu cocycle is reducible to
constant coefficients such characterization also holds. In fact, one can prove
that if an Almost Mathieu cocycle (or any other quasi-periodic Schrödinger
cocycle), for some a, b, ω fixed, is reducible to constant coefficients with
Floquet matrix B then a is at the endpoint of a spectral gap of the operator
if, and only if, trace B = ±2. Moreover the gap is collapsed if and, only if,
B = ±I.

Therefore, if

B =
�

1 c
0 1

�

then the gap is collapsed if, and only if, c = 0. Summing up, we have that 2a/b
is a noncollapsed spectral gap of σAM

4/b,ω if, and only if, the Floquet matrix of
the corresponding cocycle, is the identity.

Now we can use an adaption of Ince’s argument [9] for the classical Math-
ieu equation to our case. If B was the identity then, as we learned from
Floquet representation (4), there would be two linearly independent real an-
alytic quasi-periodic Bloch waves of Harper’s equation

xn+1 + xn−1 +
4
b

cos(2πωn + φ)xn =
2a

b
xn, n ∈ Z .

Passing to the dual, this would tell us that

xn+1 + xn−1 + b cos(2πωn)xn = axn, n ∈ Z .

has two linearly independent solutions in l2(Z). This is a contradiction with
the limit-point character of the Almost Mathieu operator (or the preservation
of the Wronskian for the difference equation).

Therefore B �= I (c �= 0) so that 2a/b is the endpoint of a noncollapsed
gap of σAM

4/b,ω. Since such endpoints are dense in the spectrum, this must be
a Cantor set for all b �= 0,±2 and Diophantine frequencies.
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2 Extension to Real Analytic Potentials

In the proof of the Ten Martini Problem that we have presented above, there
are some features which are specific of the Almost Mathieu operator. Some
other, however, can be extended to more general potentials. Let us try to
reproduce the proof for a real analytic potential V : T → R instead of b cos θ.
The corresponding Schrödinger operators are of the form

(HV,ω,φx)n = xn+1 + xn−1 + V (2πωn + φ)xn .

The dual model of this operator is the following long-range operator,

(LV,ω,φx)n =
�

k∈Z
Vkxn+k + 2 cos(2πωn + φ)xn

so that analytic quasi-periodic Bloch waves of HV,ω,φ correspond to exponen-
tially localized eigenvectors of LV,ω,φ. Bourgain & Jitomirskaya [3] proved
that, for some ε > 0, LV,ω,φ has pure-point spectrum with exponentially
localized eigenfunctions for almost all φ ∈ T if

|V |ρ := sup
|Imθ|<ρ

|V (θ)| < ε

and ω is Diophantine.
Using this result and some facts on the ids one can show [15] that for

Lebesgue almost every a ∈ R, the cocycle

(Aa−V , ω) =
��

a − V (θ) −1
1 0

�
, ω

�

is reducible to constant coefficients if |V |ρ < ε and ω is Diophantine. Also,
there exists a dense set of values of a in the spectrum such that the corre-
sponding cocycle is reducible to

B =
�

1 c
0 1

�
.

Therefore, these values of a are at endpoints of spectral gaps of HV,ω,φ.
However, we cannot use Ince’s argument and it may happen that some of
these are collapsed (see Fig. 3). In fact, there are examples of quasi-periodic
Schrödinger operators (with V small, ω Diophantine) which do not display
Cantor spectrum (see De Concini & Johnson [6]).

Nevertheless, even if c can be zero, Moser & Pöschel [13] showed that,
in this reducible setting, a closed gap can be opened by means of an arbi-
trarily small and generic perturbation of the potential, as it is shown in [15]
(the proof by Moser & Pöschel is in the continuous case, although it extends
without trouble to the discrete). Here generic is meant in the Gδ-sense, con-
sidering the space of real analytic perturbations in some fixed complex strip
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Fig. 3. Left: Endpoints of some spectral gaps of HbV,ω,φ, with V (θ) = cos(θ) +
0.3 cos(2θ) and several values of b (in the vertical direction) and ω = (

√
5 − 1)/2.

Note the spectral gap which is collapsed. Right: Magnification of the figure around
the collapsed gap

furnished with the supremum norm. Since there is, at most, a countable num-
ber of collapsed spectral gaps, we can conclude that, a generic potential with
|V |ρ < ε, for some ρ fixed, has Cantor spectrum for Diophantine frequencies
(see again [15]). This generalizes nonperturbatively results obtained by Elias-
son [8] on the genericity of Cantor spectrum for quasi-periodic Schrödinger
operators.

3 Cantor Spectrum for Specific Models

The results in the previous section on the genericity of Cantor spectrum for
quasi-periodic Schrödinger operators have the disadvantage that they cannot
be applied to specific examples of Schrödinger operators. In this section we
will briefly describe how to get Cantor spectrum, and opening of all gaps,
for some prescribed families of quasi-periodic Schrödinger operators. This is
joint work with Broer & Simó [4, 16].

Here we will consider continuous Schrödinger operators, and for the sake
of definiteness, the following quasi-periodic Mathieu operator

HQPM
b,ω,φ x = −x�� + b

d�

j=1

cos(ωjt)x ,

where now x ∈ L2(R). Let us consider the self-adjoint extension of HQPM
b,ω,φ to

L2(R) whose spectrum, again, does not depend on φ (see Fig. 4). For such
operators we can prove the following.

Theorem 2. Let d ≥ 2. Then for almost all ω = (ω1, . . . , ωd) ∈ Rd there is
a C = C(ω) such that for all values of 0 < |b| < C, except for a countable
set, the spectrum of the quasi-periodic Mathieu operator HQPM

b,ω,φ has all gaps
open and, thus, it is a Cantor set.



Cantor Spectrum for Quasi-Periodic Schrödinger Operators 89

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Fig. 4. Spectrum of HQPM
b,ω,φ for several values of b vertical direction. Shaded regions

correspond to gaps. Here ω = (1, γ)T where γ = (1+
√

5)/2. Source Broer & Simó [5]

The idea for the proof is based on the study of gap boundaries as functions
of the coupling constant b. The set formed by the closure of a certain gap
(with fixed label) in the (a, b)-plane will be called a resonance tongue. When
the boundaries of a certain resonance tongue merge for two different values
of b we will speak of an instability pocket (see Fig. 5).

In the periodic case it is known (see, e.g. Rellich [17]) that tongue bound-
aries are real analytic functions. In the quasi-periodic case the same methods
cannot be applied, but using kam techniques it can be seen that tongue
boundaries are real analytic if |b| is smaller than a certain constant C which
depends on the Diophantine class of ω [16].

Using Birkhoff Normal Form, we show that all these tongue boundaries
(which we know are real analytic) have some finite order of contact at b = 0
[4]. In particular, each gap can collapse at most a finite number of times.
Since the number of gaps is countable we only have to take out a countable
subset of |b| < C.

Remark 4. This is a perturbative result (the smallness condition on the poten-
tial depends on the precise Diophantine conditions on the frequency vector)
but it holds irrespectively of the dimension d (contrary to the methods in the
first two sections).

Remark 5. The same result holds for any quasi-periodic potential whose
Fourier coefficients are all nonzero.
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a

b

Non-collapsed gaps

Collapsed gap

Instability pocket

Resonance tongue boundaries

Fig. 5. Resonance tongue with pocket in the (a, b)-plane giving rise to spectral
gaps on each horizontal line with constant b. Note how collapse of gaps corresponds
to crossings of tongue boundaries at tips of an instability pocket

Remark 6. In [4] it is shown that by means of suitable and arbitrarily small
perturbations of the potential of HQPM

b,ω,φ it is possible to produce pockets at
any gap of the operator.
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