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1 Introduction

A defining characteristic of dynamic geometry (DG) systems is that uncon-
strained parts of a construction can be moved, and, as they do, all elements
automatically self–adjust, preserving dependent relationships and constraints
(see [1]). As a natural consequence, DG software allows users to keep track on
the path of an object that depends on another one while this last object is
dragged. These constructive loci are perhaps one of the most appealing abilities
in DG. This constraint approach led to a simple strategy: the locus of a tracer
object, depending somehow on a driver object with a predefined path, is drawn
by sampling the driver path and plotting the tracer position for each sample.
Most DG programs use segments to join these positions in order to suggest a
continuous curve. Nevertheless, the uniform division of the path can produce
anomalous loci when a small variation of the driver object produces important
changes on the tracer position, as illustrated in Figure 1 by the curve returned
in The Geometer’s Sketchpad [2] as a conchoid when the focus O is almost on
the path of the driver point P .

Fig. 1. An aberrant conchoid of Nicomedes in The Geometer’s Sketchpad.
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It must be noted that in order to get both branches of the conchoid the user
must compute two loci, corresponding to the two possible intersections of a circle
and the driver’s path.

A relevant issue when finding locus consists of the knowledge the system
has about the new object. The above approach describes a locus just as a list
of points, thus forbiding a posteriori computations (consider, for instance, com-
puting a tangent to a curve obtained as locus). Cabri [3] includes an option
to compute the equations of loci based on polynomial interpolation. It uses a
sample of points on the locus to generate equations (with degree not greater
than 6), so giving just approximate results. Figure 2 shows the equations for
an astroid (note again that the astroid is obtained as two loci). Although the
algorithm is not public, it seems that it is very unstable, and the returned results
are frequently erroneous even for simple cases.

Fig. 2. Equations returned by Cabri for the upper and lower halves of an astroid.

2 Automatic Loci Discovery via Groebner Bases

In [4] a further development of the well–known approach to automatic theorem
proving in elementary geometry via algorithmic commutative algebra and alge-
braic geometry is discussed. Rather than confirming/refuting geometric state-
ments or deriving geometric formulae, the issue of automatic discovery of state-
ments is considered. The method has been specialized in [5] to deal with dis-
covery of standard loci. A rough description of the method is as follows: Given
a geometric construction with a point whose locus is the one we are looking
for, the procedure begins by translating the geometric properties into algebraic
expressions. We use the field of rational numbers Q and C, the field of complex
numbers, as an algebraically closed field containing the former. The collection
of construction properties is then expressed as a set of polynomial equations
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p1(x1, . . . , xn) = 0, . . . , pr(x1, . . . , xn) = 0,

where p1, . . . , pr 2 Q[x1, . . . , xn]. Thus, the a�ne variety defined by V = {p1 =
0, . . . , pr = 0} ⇢ Cn contains all points (x1, . . . , xn) 2 Cn which satisfy the
construction requirements, that is, the set of all common zeros of p1, . . . , pr in
the n-dimensional a�ne space of C describe all the possible positions of the
construction points. In particular, the positions of the locus point define the
locus we are searching for. Thus, supposing that the locus point coordinates are
xn�1, xn, the projection

⇡n�2 : V ⇢ Cn ! C2

gives an extensional definition of the locus in the a�ne space C2. This projection
can be computed via the (n � 2)th elimination ideal of hp1, . . . , pri, In�2. The
Closure theorem states that V (In�2) is the smallest a�ne variety containing
⇡n�2(V ), or, more technically, that V (In�2) is the Zariski closure of ⇡n�2(V ).
So, except some missing points that lie in a variety strictly smaller than V (In�2),
we can describe the locus computing a basis of In�2. This basis is computed as
follows: given the ideal hp1, . . . , pri ⇢ Q[x1, . . . , xn], let G be a Groebner basis of
it with respect to lex order where x1 > x2 > . . . > xn. The Elimination theorem
states that Gn�2 = G \Q[xn�1, xn] is a Groebner basis of In�2. Unfortunately,
we will find in many cases that Gn�2 = ;, that is, V (hGn�2i) = C2, which only
allows as conclusion the irrelevant statement that ”the locus is contained in the
plane”. Nevertheless, we do not want to eliminate all variables except those of
the locus point, but simply the variables stemming from dependent points. So,
the construction properties are translated into a set of polynomial equations

p1(x1, . . . , xs, u1, . . . , ut) = 0, . . . , pr(x1, . . . , xs, u1, . . . , ut) = 0,

where x1, . . . , xs are the dependent point coordinates, and u1, . . . , ut are those
of free points. Note that the coordinates of the locus point are included in this
{u�} set (thus also allowing the study of loci of points not constructible in
the environment). The elimination of x1, . . . , xs in the ideal hp1, . . . , pri returns
another ideal hq1, . . . , qmi whose a�ne variety V (q1, . . . , qm) ⇢ Ct contains the
locus.

Despite the cost of computing Groebner bases, this method has been proved
as successful for automatically determining loci in DG environments (see a pro-
totype in [5]). It has been incorporated into JSXGraph [6] under a web–based
access, and is currently being incorporated into GeoGebra [7, 8]. Apart from the
structural algebraic limitation of this method, its main drawback deals with the
inclusion of special/degenerate components of the sought loci. If a geometric
constraint becomes undefined for some instance of the construction, the corre-
sponding polynomial will not be taken into account during elimination, and a
spurious part of the locus will be included in the final answer. As an illustration
of the case, consider a limaçon of Pascal where the focus lies on the base curve.
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Fig. 3. An extra circle when computing a limaçon of Pascal with JSXGraph.

In such a case, an extra circle centered at the focus will be returned as part of
the limaçon, as computed by JSXGraph in Figure 3.

Another source of imprecision comes from the variety–like description of loci.
A variety describing a locus can contain extra points not satisfying the geometric
constraints of the problem. For instance, the pedal of an ellipse with respect to
its center will be described by a variety including the center, if following the
above approach. Since this point is not a part of the pedal, any subsequent
computation using its polynomial description will be wrong.

3 Automatic Loci Discovery via Parametric Groebner

Bases

The remotion of special/degenerated parts and the computation of loci as con-
structible sets, rather than varieties can be e�ciently solved in the field of dy-
namic geometry by using the theory of parametric polynomial systems. Here, we
propose using the Groebner Cover (GC) algorithm [9]. The variables occurring
in the equations which describe a locus construction can be divided into a set of
parameters and a set of unknowns. The parameters (a, b) correspond to the locus
point, while the unknowns (x, y, . . .) (variables from now on), correspond to the
remaining points of the geometric construction. Finding the locus is equivalent
to obtain the set of values of the parameters for which it exists a finite number
of values of the variables. The values of the parameters for where it does not
exist any solution do not form part of the locus. Moreover, the parameter values
for which it exists an infinite number of solutions of the variables correspond to
a degenerate construction and must also be excluded from the “Normal” locus.
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Thus, we look for solutions of the parametric system in terms of the parame-
ter values, and the structure of the solution space. More formally, a parametric
polynomial system over Q is a finite set of polynomials p1, . . . , pr 2 Q[ā, x̄] in the
variables x̄ = x1, . . . , xn and parameters ā = a1, . . . , am. The goal is studying
the solutions of the algebraic systems {p1(a, x̄), . . . , pr(a, x̄)} ⇢ Q[x̄] which are
obtained by specializing the parameters to concrete values a 2 Cm.

The GC algorithm emphasizes the obtention of a canonical description (as
compact as possible) of the parametric system. Before sketching our algorithmic
use of GC, we discuss in some detail the obtention of a limaçon of Pascal. Let
O(0, 2) be a fixed point on the circle c : x2 + y2 = 4 and l be a line passing
through O and P (x, y) (any point on c). Let Q(a, b) be a point on l such that
distance(P,Q) = 1. We seek for the locus of Q when P moves along the circle
c. The system of equations is:

S = x2 + y2 � 4, (b� 2)x� ay + 2a, (a� x)2 + (b� y)2 � 1.

The standard elimination procedure of the preceding section returns the variety

V = V(a4 + 2a2b2 + b4 � 9b2 � 9b2 + 4b + 12) [ V(a2 + b2 � 4b + 3),

where the former corresponds to the sought conchoid, whereas the last one comes
from a degeneracy stemming from the coincidence of P and the focus O. GC
returns four segments for this parametric system:

– Segment 1
• segment:

Q2 \ (V(a2 + b2 � 4b + 3) [ V(a4 + 2a2b2 � 9a2 + b4 � 9b2 + 4b + 12))
• basis: {1}

– Segment 2
• segment:

(V(a2 + b2 � 4b + 3) \ (V(2b� 3, 4a2 � 3))
[(V(a4 + 2a2b2 � 9a2 + b4 � 9b2 + 4b + 12) \ (V(2b� 3, 4a2 � 3) [ V(b� 2, a))

• basis:
⇢

(2a2 + 2b2 � 4b)y + (�a2b� 2a2 � b3 + 2b2 � 3b + 6),
(2a2 + 2b2 � by)x + (�a3 � ab2 + 4ab� 3a).

– Segment 3
• segment: V(b� 2, a) \ V(1)
• basis: {4y � 7, 16x2 � 15}

– Segment 4
• segment: V(2b� 3, 4a2 � 3) \ V(1)
• basis: {x + 2ay � 4a, y2 � 3y + 2}
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These segments must be understood as follows. Segment 1 states that any
general point in the plane does not satisfy the locus conditions (there is no
solution of the parametric system, since the basis is {1}), unless the point lies
on the circle a2+b2�4b+3 = 0 or the curve a4+2a2b2�9a2+b4�9b2+4b+12 = 0
(note that these factors were previously obtained with the standard elimination
approach). Segment 2 declares that the points lying on the circle and the limaçon
satisfy the required constraints, and the variables x, y can be expressed in terms
of the parameters a, b by the given base and have a single solution. Nevertheless,
some of these points correspond to other parametric values, as described by
segments 3 and 4, where the system has two solutions in the variables.

A locus–oriented procedure to interpret this canonical segment decomposi-
tion is as follows:

Add all the segments corresponding to a finite number of solutions (in the
variables), i.e. segments 2, 3 and 4 in this example. This gives exactly the same
result as with the previous method, namely the variety V . Nevertheless, if we
specialize the basis over the component V(a2+b2�4b+3) we obtain {y�2, x} as
basis. This shows that this curve of the locus corresponds to a single point of the
variables (the point P ), and thus it should be declared as a special component of
the locus. An automatic procedure that takes into account the above discussion
when it is applied to the GC gives the following output for the locus:

[[V(a2 + b2 � 4b + 3), ”Special”], [V(a4 + 2a2b2 � 9a2 + b4 � 9b2 + 4b + 12)]]

so that one can distinguish between the ”Normal” components of the locus and
the ”Special” components if they exist.

A live demo of loci computations by using a Singular [10] webservice [11] with
the described approach will be given during the talk. This web–based resource
could be used to enhance DG systems abilities, as GeoGebra is currently doing
for symbolic proving.
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