
Computer-Aided Design 56 (2014) 22–33
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

An algebraic taxonomy for locus computation in dynamic geometry✩

Miguel Á. Abánades a,∗, Francisco Botana b, Antonio Montes c, Tomás Recio d

a CES Felipe II, Universidad Complutense de Madrid, Spain
b Depto. de Matemática Aplicada I, Universidad de Vigo, Spain
c Universitat Politècnica de Catalunya, Spain
d Depto. de Matemáticas, Estadística y Computación, Universidad de Cantabria, Spain

h i g h l i g h t s

• A taxonomy for locus computation in dynamic geometry is proposed.
• An algorithm for automatic locus computation using the Gröbner Cover is described.
• A prototype of web application implementing the main algorithm is provided.

a r t i c l e i n f o

Article history:
Received 13 February 2014
Accepted 14 June 2014

Keywords:
Dynamic geometry
Locus computation
Parametric polynomial systems
GröbnerCover algorithm

a b s t r a c t

The automatic determination of geometric loci is an important issue in Dynamic Geometry. In Dynamic
Geometry systems, it is often the case that locus determination is purely graphical, producing an output
that is not robust enough and not reusable by the given software. Parts of the true locus may be miss-
ing, and extraneous objects can be appended to it as side products of the locus determination process.
In this paper, we propose a new method for the computation, in dynamic geometry, of a locus defined
by algebraic conditions. It provides an analytic, exact description of the sought locus, making possible
a subsequent precise manipulation of this object by the system. Moreover, a complete taxonomy, cata-
loging the potentially different kinds of geometric objects arising from the locus computation procedure,
is introduced, allowing to easily discriminate these objects as either extraneous or as pertaining to the
sought locus. Our technique takes profit of the recently developed GröbnerCover algorithm. The taxon-
omy introduced can be generalized to higher dimensions, but we focus on 2-dimensional loci for classical
reasons. The proposed method is illustrated through a web-based application prototype, showing that it
has reached enough maturity as to be considered a practical option to be included in the next generation
of dynamic geometry environments.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In general, a geometric locus is a set of points satisfying some
condition. For instance, the set of points A at a given distance d to
a specific point C is the circle centered at C of radius d. For another
simple example of a different kind, let c be a given circle with cen-
ter C , letQ be an arbitrary point on the circle and consider the locus
of midpoints P of the segments CQ , as Q glides along the circle c.

In Dynamic Geometry (DG), the term locus generally refers to
loci of this second kind: i.e. to the trajectory determined by the

✩ This paper has been recommended for acceptance by Ralph Martin.
∗ Corresponding author.

E-mail addresses: abanades@ajz.ucm.es, mabanades70@gmail.com
(M.Á. Abánades).

http://dx.doi.org/10.1016/j.cad.2014.06.008
0010-4485/© 2014 Elsevier Ltd. All rights reserved.
different positions of a point (the tracer, as point P above), corre-
sponding to the different instances of the construction determined
by the different positions of a second point (the mover, such as
point Q above) along the path where it is constrained. This is the
case for the first standard DG systems developed in the late 1980s
(such as Cabri [1] and The Geometer’s Sketchpad [2]), but it is also
true for the more recent ones, such as GeoGebra [3] or Java Geom-
etry Expert [4].

Note that even simple DG constructions can involve two-
dimensional loci. Consider, for instance, two circles, each one with
a point moving on it. While the locus of their midpoint is a cir-
cular region, no current DG environment would return such set,
since the corresponding locus command cannot manage two inde-
pendent mover points. Thus, our discussion is restricted to loci in
constructions with exactly one degree of freedom. This approach
includes standard DG loci, and also constructions currently not

http://dx.doi.org/10.1016/j.cad.2014.06.008
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.06.008&domain=pdf
mailto:abanades@ajz.ucm.es
mailto:mabanades70@gmail.com
http://dx.doi.org/10.1016/j.cad.2014.06.008

M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33 23
covered by the locus function in interactive environments, such as
a circle computed through its standard definition as the locus set
of points at a given distance to a given point.

There is a wide consensus among DG developers to consider
locus computation as one of the five basic properties in the DG
paradigm (together with dynamic transformation, measurement,
free dragging and animation; see, for instance [5]).

In Section 2 we review the different approaches followed by
DG environments to address the computation of loci. We discuss
the traditional numeric method, as well as some improvements
aimed at providing a more detailed knowledge of loci, including
those coming from the field of symbolic computation. Limitations
and failures of thesemethods are emphasized,with a view towards
providing a benchmark to test the performance of our method,
which is illustrated by the examples in Section 5.

Our approach considers a given locus as a certain subset of the
projection set of an associated algebraic variety (see Section 3).
Manymethods have beendeveloped to obtain the Zariski closure of
such projections (Gröbner bases, characteristic sets, discriminant
varieties, border polynomials, . . .). Our proposal takes advantage of
the specific features found in the recently developedGröbnerCover
algorithm (see Section 4) to
• compute the projection set, yielding a constructible set (and not

just the algebraic set given by the Zariski closure), and
• automatically discriminate the relevant components, within

the constructible set, containing the given locus.

The last property is achieved by developing an elaborated taxon-
omy for different pieces of the aforementioned projection set, and
by algorithmically assigning to each one the corresponding label
(see Section 3).

Following this taxonomy, we establish a protocol that yields
a faithful symbolic description of a given locus in terms of con-
structible sets, collecting pieces of the projection set featuring
‘good’ labels. In Section 4, a software tool implementing our
proposal is described. Finally, several examples illustrating the
method are discussed in detail in Section 5.

The provided examples show that our method overcomes
limitations found in previous proposals, and also that it allows the
computation of generalized loci in the sense of [6], see Section 5.4.

2. Locus computation in dynamic geometry: approaches and
limitations

Sutherland’s Sketchpad [7], one of the first graphic interfaces,
developed half a century ago, already included some key concepts
in the paradigm of dynamic geometry. Most remarkably, it intro-
duced the use of a light pen to select and dynamically interact with
geometric objects displayed on a screen, in a way almost identical
to mouse dragging (or finger dragging on touchscreens).

In particular, for locus computation, the approach followed by
Sketchpad is basically the same as the one present in current stan-
dard DG systems, namely, it consists of building a set of sample
locus points (a time exposure in Sutherland’s words). Below, we
briefly describe this ‘traditional’ method, as well as some attempts
towards its improvement.

2.1. The traditional method: loci by sampling

The standard approach followed by DG systems to obtain loci
is based on sampling the path of the mover. Each sample point
determines a position for the tracer, and hence a point in the locus.
This set of locus points can then be shown as a collection of pixels
on the screen, suggesting the sought locus.

On this list of locus points, most DG systems apply some simple
heuristics to join contiguous points, in order to return the locus
as a continuous, (usually) one-dimensional object, on the screen.
A first difficulty arises here, because the applied heuristics can
return aberrant loci, since smallmodifications in a construction can
sometimes produce significant changes of position in dependent
objects (see [8] for details).

A second problem, regardless of whether the locus is returned
as a sequence of points or as a continuous curve, is the fact that the
locus is simply a graphical representation, preventing the system
fromworking any further with such output. For instance, since the
equation of a curve (as a locus) is not available if this locus is ob-
tained by the traditional method, computing its tangent at a point
becomesmany times very imprecise, if not impossible altogether.1

Another difficulty emerging from this numerical method is
found when trying to obtain the intersection of a locus with an-
other element in the construction. Although various solutions have
been introduced in different systems, these are essentially approx-
imate, and they often add serious inaccuracies to the construction.

2.2. Improvements to the traditional method

The search for more sophisticated ways to automatically obtain
loci has led different DG systems to consider different approaches.
We summarize here the most relevant.

2.2.1. Locus recognition by minimizing distance to algebraic curves
The first DG system to include a command to provide algebraic

information for a locus was Cabri. Since its release in 2003, Cabri
Geometry II plus, the current version of Cabri, incorporates a tool
for computing approximate algebraic equations for loci.

Although proper documentation of this feature is not provided
by Cabrilog, the company behind Cabri, a schematic description
of the algorithm used in the back-end can be found in [9]. It is
based on the random selection of one hundred locus points and
the computation of the best approaching polynomial curve (up to
degree six) to this collection of points. Let us point out that the
limiting factors of this approach come from sampling and fitting
points to sufficiently high accuracy. Moreover, the number of
monomials whose coefficients must be found grows as the square
of the degree.

This numerical procedure does not result, in our opinion, in a
satisfactory solution. In fact, simple locus constructions can eas-
ily give rise to algebraic curves of degree higher than 6 (see,
for instance, [10]), that would go undetected for Cabri. More-
over, no comment is attached to the locus output concerning the
(in)exactness of the algebraic information provided, hence induc-
ing a non expert user to take it as an accurate one (cf. [11], where
Cabri is shown to return a cubic as equation for the curve of Watt).

Likewise, in [12,13], the authors consider also the rendering
of some (many) sample points of a locus set constructed by ruler
and compass as the initial data of an algorithm to determine the
degree and parameters of an algebraic curve ‘resembling’ the locus.
In a second step, a collection of such curves, obtained varying the
position of basic construction points, is analyzed in order to get
more general knowledge about the involved locus.

Although impressively precise in certain situations, the algo-
rithm is prone to inaccuracies for curves of high degrees [12, p. 63].
Besides these problems, the authors report other drawbacks in
the method, that make it unsuited for efficient implementation. In
summary, we consider this a promising, but still an open approach
to automated locus determination.

2.2.2. Randomized theorem proving techniques in cinderella
In [14,15], the authors (and developers of Cinderella [16]) re-

view how their software uses automatic theorem proving to add

1 See comment by the creator of The Geometer’s Sketchpad about the construc-
tion of tangents to a locus set as the limit of secants in http://mathforum.org/kb/
message.jspa?messageID=1095049.

http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049

24 M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33
extra information to certain elements in a geometric construction.
In particular, Cinderella uses automated deduction techniques
based on randomized methods to improve the knowledge about
some loci.

Roughly speaking, randomized theorem proving consists on
checking a property for a sufficient number of examples. More-
over, randomized theoremproving could provide a valid certificate
answer if tested on a sufficient number of examples related to the
degrees of the involved polynomials. For instance, given a con-
struction including three points A, B and C , the system will take
as a fact that the points are aligned if the line AB contains the point
C for a large set of instances obtained by randomly modifying the
position of points A and B. From then on, the system will take the
elements line(A, B) and line(B, C) to be identical.

In particular, for any locus in a diagram (i.e. a finite set of sam-
ple locus points), the line defined by the first two sample points, is
constructed. The system then checks whether the rest of the sam-
ple points belong to this line, not only for that particular instance of
the diagram, but also for any instance in a large set of randommod-
ifications of the diagram. In that case, the locus element is replaced
by that line (togetherwith its equation). If the locus is not identified
as a line, a similar process is followedusing the circle defined by the
first three locus points. If not identified as circle either, the conic
defined by the first five interpolation points is taken as candidate.

This replacement, when successful, not only facilitates the
rendering process of the locus, but also allows the system to use it
for further constructions, such as intersections with other objects.

Although approximate in nature, the method provides an
effective way to improve locus generation for many constructions.
However, the current Cinderella implementation can deal only
with lines and conics, since there are no other locus objects defined
by equations in this system. This makes this approach a limited
answer to the general question of locus implementation in DG.

Related to randomized theorem proving, but more sophisti-
cated, is numerical algebraic geometry,which also exploits the idea
of drawing conclusions about algebraic sets by numerically test-
ing whether sample points satisfy algebraic conditions. Moreover,
it uses sampling over the complex numbers, not just real num-
bers, to strengthen its performance (see [17]). Although no DGS
has yet incorporated numerical algebraic geometry, it should pro-
vide a strong numerical alternative for locus computation to the
approaches mentioned in this note.

2.2.3. Locus discovery with algebraic elimination techniques
In many instances, a dynamic geometry construction concern-

ing a locus computation can be viewed as a set of polynomial equa-
tions, corresponding to the analytic expression of the geometric
objects involved in the description of the mover and tracer points.
Then, roughly speaking, computing a locus can be understood as
obtaining an equivalent set of polynomials, but only in the vari-
ables corresponding to the tracer, i.e. as eliminating the remaining
variables.

For this task, constructive elimination tools, such as Gröbner
bases [18,19] andWu’s method [20,21], are crucial. Although some
authors have used Wu’s method for algebraic loci computation
(e.g. [22–24], albeit with no GUI, and [25]) the use of Wu’s method
for a true automatic generation of loci within a DG system remains
unexplored. On the other hand, Gröbner bases have been widely
used for automatic theorem proving [26–28]. In particular, in [29],
a method based on Gröbner bases for automatic discovery is de-
scribed. Moreover, linking Cabri, the most popular DG system at
the time, and the Gröbner basis method for automatic discovery,
in an intelligent program for learning Euclidean geometry, is ex-
plicitly proposed. Specializing this approach, an algorithm for au-
tomatic discovery of loci based on Gröbner bases was introduced
in [30].
The elimination (using Gröbner bases) of some variables in the
polynomial ideal obtained as translation of the construction, leaves
us with a set of polynomials in the tracer-point coordinates only.
The zero set of these polynomials is, in general, a superset of the
sought locus set.

A problem with this algebraic approach is that the obtained
algebraic setmay contain extra components, sometimes due to the
fact that the method returns only Zariski closed sets,2 some other
times due to degenerate instances of the construction.

For instance, let us consider the limaçon of Pascal, a conchoid
that can be constructed as a DG locus as follows. Let O be a fixed
point on a circle c , let l be a line passing through O and P (a general
point on c). Let Q be a point on l such that distance(P,Q) = k,
where k is a constant. The limaçon of Pascal is the locus set traced
by Q as P moves along c , as shown on Fig. 1 (left).

We make the following assignment of coordinates: P(x1, x2),
Q (x, y). For example, if we consider thatO is the point (0, 2), k = 1
and (0, 0) the center of c we get the ideal I = (x21 + x22 − 4, (x1 −

x)2 + (x2 − y)2 − 1, x(x2 − 2) − x1(y − 2)) whose polynomials
correspond, respectively, to the following geometric constraints:
P is in the circle of center (0, 0) and radius 2, distance(P,Q) = 1
and Q ∈ Line(P,O). Eliminating variables x1 and x2, we obtain the
following product of two polynomials (x4 + 2x2y2 + y4 − 9x2 −

9y2 + 4y + 12)(x2 + y2 − 4y + 3). While the first factor provides
the implicit equation for the actual limaçon, the second factor cor-
responds to a spurious circle associated to the degenerate case for
which P = O, when the line l ceases to exist (see Fig. 1, right).

Example 1 in Section 5 provides an example of locus for which
this procedurewould return an algebraic set with extra points, due
to the Zariski closedness of the result.

Despite its limitations, this algebraic approach was a signifi-
cant improvement, not only over the traditional method, but also
over all other approaches mentioned above. The provided analyt-
ical knowledge about general algebraic loci, albeit sometimes in-
correct, is a prerequisite for integrating loci as standard objects in
DG environments. Thus, the approach attracted the attention of de-
velopers, being this approach behind the LocusEquation command
in the current version of GeoGebra.3 Furthermore, it has also been
implemented by the DG system JSXGraph using remote computa-
tions on a server [31], an idea previously developed in [32].

3. A taxonomy of loci as projections

As described in Section 2, many dynamic geometry construc-
tions in the plane can be viewed as polynomial systems on the
variables corresponding to the symbolic coordinates of the objects
in the construction. While in standard dynamic geometry loci al-
ways involve amover point, our approach subsumes these loci into
amore general setting. In this way, simple loci as the circle defined
through a point and a radius, or loci where there is not a mover
bound to a linear object (see Section 5.4), can be efficiently found.

We start by distinguishing the variables corresponding to the
coordinates of the tracer T (x, y) from the rest of variables, say
x1, . . . , xn, corresponding to the remaining points and objects in
the construction; in particular the coordinates of the mover if they
are explicitly specified. Note that the consideration of a mover
point comes from the constructive strategy followed in most DG
environments when considering loci. However, in a constraint-
based geometric system, no mover point is involved when search-
ing for a locus, since more than one point can be generally used

2 That is, the complete solution set of a system of polynomial equations. No
missing points are allowed (see Section 5.1).
3 See http://wiki.geogebra.org/en/LocusEquation_Command.

http://wiki.geogebra.org/en/LocusEquation_Command

M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33 25
Fig. 1. Limaçon of Pascal as the locus set traced by Q as P runs along the circle c (left) and Limaçon with extra circle (right).
to drag the construction. Thus, although for the sake of clarity we
talk about mover points when describing the examples, the reader
should be aware that no algebraic preeminence is given to any
point other than the locus point.

The translation of the geometrical constraints defining the
construction results in a system F of polynomial equations in the
variables x1, . . . , xn with coefficients given by polynomials in the
parameters x, y.

Our approach consist of detecting for which values of the pa-
rameters (x, y) (tracer) there exist solutions of the system F . The
set of equations is defined over a computable field K , that we al-
ways take to be Q, whereas the values of the variables (and param-
eters) must be considered over an algebraically closed extension K
of K , thatwe take to beC. Our approach involves the comparison of
dimensions of different algebraic varieties. Since the dimensions of
complex and real varieties are in general different, we have opted
to work in the complex framework, as customary in the field (see,
for instance, [15,21]).

Let us point out that the algebraic study of loci that we are
developing in dimension 2 for classical reasons, can be general-
ized in theory to higher dimensions. In fact Gröbner covers are
not constrained to work only in the 2D case. Here, we focus on
2-dimensional loci since 3D DG environments are not yet quite de-
veloped. Furthermore, there are specific issues concerning the ap-
plication of the theory of parametric polynomial systems to 3D DG.
Thus, we delay such a study to a future communication.

Before giving our definition of locus, let us state some basic
concepts about locally closed sets and constructible sets.

A locally closed set L is a difference of algebraic varieties L =

V(E) \ V(N). As explained in [33], for a locally closed set, a canoni-
cal P-representation expressed in terms of prime ideals can be ob-
tained:
Prep(L) = {{pi, pij : 1 ≤ j ≤ ri, r} : 1 ≤ i ≤ r}
so that

L =

r
i=1

V(pi) \

ri

j=1

V(pij)

.

As illustrative examples one can consider the following simple
locally closed sets:
S1 = V(x) \ V(y(y − 1))
Prep(S1) = V(x) \ (V(x, y) ∪ V(x, y − 1))
p1 = ⟨x⟩, p11 = ⟨x, y⟩, p12 = ⟨x, y − 1⟩
S2 = V(xy) V(x + y − 1)
Prep(S2) = (V(x) V(x, y − 1)) ∪ (V(y) \ V(x − 1, y))
p1 = ⟨x⟩, p11 = ⟨x, y − 1⟩, p2 = ⟨y⟩,
p21 = ⟨x − 1, y⟩.
Each element V(pi) \
ri

j=1 V(pij)

is called a component of L

and is represented by {pi, {pij : 1 ≤ j ≤ ri}}, that, by abuse of
terminology, is also denoted component whenever there is no am-
biguity. In the canonical representation, the irreducible varieties
are expressed in terms of prime ideals on account of the well
known one-to-one correspondence between irreducible varieties
and prime ideals. Given a component as above, the variety V(pi)
(or its representative pi) is called the top of the component. Simi-
larly, the varieties V(pij) (or their representatives pij) are called the
holes. In particular, the dimension of each hole variety is smaller
than the dimension of its corresponding top variety.

A constructible set is a union of locally closed sets. In gen-
eral, a union of locally closed sets is not locally closed, but we
can also give a canonical description in terms of disjoint em-
bedded locally closed subsets and represent them canonically in
P-representations. Furthermore, we consider another representa-
tion for constructible sets, the C-representation, defined as follows.

Proposition 3.1 (C-Representation of Constructible Sets). Let S ⊂

K
m

be a constructible set. There exist uniquely determined radical
ideals ((a(ℓ), b(ℓ)) : 1 ≤ ℓ ≤ s), such that

• a(1)
⊂ b(1)

⊂ a(2)
⊂ b(2)

⊂ · · · ⊂ a(s)
⊂ b(s)

• S(ℓ)
= V(a(ℓ)) \ V(b(ℓ)),

• S(ℓ) = V(a(ℓ)) where S(ℓ) is the Zariski closure of S(ℓ)

• S(ℓ) \ S(ℓ)
= V(b(ℓ))

• S =

ℓ S
(ℓ) is a disjoint union of embedded locally closed sets,

• dim(a(1)) > dim(b(1)) > · · · > dim(a(s)) > dim(b(s)).

S(ℓ) is called the ℓth level of the constructible set S, and the set of pairs
((a(ℓ), b(ℓ)) : 1 ≤ ℓ ≤ s) is called the C-representation of S.

The canonical C-representation of a constructible set expresses the
set as a hierarchical and disjoint union of locally closed subsets given
in C-representation.

Proof. Let S be the closure of S. a(1) can be described canonically
by S = V(a(1)). If S is locally closed, then the complement of S
w.r.t. S will be closed, and in that case b can be canonically defined
by V(b) = S \ S ⊂ S and so S = V(a(1)) \ V(b). If S \ S is not
closed, then b(1) can be defined by the closureV(b1) = S \ S so that
V(b(1)) ⊂ S = V(a(1)), and denote S(1)

= V(a(1))\V(b(1)). We have

S(1)
= V(a(1)) \ V(b(1)) = S \

S \ S

⊆ S \

S \ S

= S and

S \ S(1)
= S \

S \ V(b(1))

⊆ S \

S \ V(b(1))

= V(b(1)).

Thus S(1)
⊆ S and its complement S \ S1 w.r.t. S is again con-

structible and included in V(b(1)). Particularly V(a(2)) = S \ S1 and
V(a(2)) ⊆ V(b(1)). The process can be continued until S(s+1) be-
comes empty.

26 M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33
To prove the strict inclusions

a(1)
⊂ b(1)

⊂ a(2)
⊂ b(2)

⊂ · · · ⊂ a(s)
⊂ b(s),

we have to consider the prime decomposition of the radical ideals

a(1), b(1), a(2), b(2), . . . , a(s), b(s),

and observe that, by construction, no prime ideal in the decompo-
sition of one of those ideals can be equal to a prime ideal in the
decomposition of the next radical ideal in the chain, as we have al-
ways consider closures and complements. From this result, as the
dimension of an irreducible variety containing another irreducible
variety is strictly higher than the latter, the result of the descending
dimensions of the chain follows. �

Note 3.2. Because of the strict decreasing dimension of the hier-
archical description, a constructible set of dimension 1 is not only
constructible, but is also locally closed.

We can proceed now with the definition of a locus. As stated
above, a locus in DG is translated into a set of parametric polyno-
mial equations F ⊆ Q[u, x] where u = (x, y) are the parameters
(representing the tracer) and x = (x1, . . . , xn) the variables. Con-
sider its solutions:

V(F) = {(u, x) ∈ C2+n
: ∀f ∈ F , f (u, x) = 0}.

Denote by π1 and π2 the projections onto the parameter and
variable space, respectively:

π1 : C2+n
−→ C2 π2 : C2+n

−→ Cn

(u, x) → u (u, x) → x.

We can now introduce a generic formal definition of a locus in
algebraic terms.

Definition 3.3. The generic locus L associated to the parametric
polynomial system F(u, x), is the set L = π1(V(F)) ⊂ C2.

Roughly speaking, the locus is the set of points (x, y) satisfying
the polynomials in F . Looking at F as a parametric polynomial sys-
tem, we will discuss this system attending to the number, finite or
infinite, of solutions of x1, . . . , xn in terms of parameters x, y. As a
first step in the classification process at the base of our taxonomy,
we split the complex locus L = π1(V(F)) into two disjoint subsets,
regarding the dimension of the solution set for the variables cor-
responding to a specific value of the parameters: the normal locus
and the non-normal locus. This distinction comes from the fact that
a point in a DG locus is usually produced by a finite set of values of
the variables.

Definition 3.4 (Normal and Non-Normal Locus). Normal points are
those pointsu ∈ C2 of the locus forwhichdim(π2(V(F)∩π−1

1 (u)))

= 0. Thepointsuof the locus forwhichdim(π2(V(F)∩π−1
1 (u))) >

0 are called non-normal. The set of all normal points is called the
normal locus and the set of all non-normal points is called the non-
normal locus.

Proposition 3.5. The normal and non-normal loci are constructible
sets.

Proof. By Chevalley’s theorem [34, IV.13.1.3 and IV.13.1.5], we
know that the set {u ∈ C2

: dim(V(F) ∩ π−1
1 (u)) < d} is open

(in the Zariski topology) for any d ∈ N. In particular, for d = 1, we
obtain that the normal locus is constructible.

For an arbitrary dimension d we have that

{u ∈ C2
: dim(V(F) ∩ π−1

1 (u)) = d}

is equal to

{u ∈ C2
: dim(V(F) ∩ π−1

1 (u)) < d + 1}
minus

{u ∈ C2
: dim(V(F) ∩ π−1

1 (u)) < d},

which is the difference of two open sets, and hence constructible.
This implies that the non-normal locus is a union of constructible
sets and hence constructible. �

Proposition 3.5 allows us to further subdivide the locus set by
considering the components associated to the canonical represen-
tations of the normal and non-normal locus as constructible sets.
Informally speaking, a part of the locus is distinguished if it violates
the one-to-one correspondence between the locus points and the
corresponding set of variable values.

Definition 3.6 (Normal and Special Components). A component Cs
of the normal locus is special if dim(Cs) > 0 and dim(π2(V(F) ∩

π−1
1 (Cs))) = 0. The remaining components of the normal locus are

normal.

Definition 3.7 (Degenerate and Accumulation Components). The
components Cd of the non-normal locus of dimension greater
than 0 are considered degenerate components, whereas the zero-
dimensional components are accumulation points of the locus.

The geometric relevance of this algebraic classification of the
different parts of a locus is open to interpretation by the user. Dy-
namic Geometry systems could present the collection of different
parts (with the corresponding typology) of the computed locus, so
the user would decide which pieces to discard or to keep as perti-
nent in a particular context.

Based on our experience (see Section 5), we will discard the de-
generate components as geometrically irrelevant, as they usually
correspond to degenerate instances of a construction, such as two
coincident vertices in a triangle. However, we consider the accu-
mulation points as forming part of the (geometric) locus, since they
represent special points that are determined by infinitely many
values of the variables. Examples of both phenomena can be found
in the battery of examples included in theweb prototype described
in Section 4.2 ([35], Locus 7 and Locus 12 respectively).

Finally, let us point out that the relevance of our proposal for
a taxonomy is that, in the many instances we have worked with
so far, we have never had to split one component (in the sense of
Definitions 3.6 or 3.7) in order to keep a part of that component
as relevant and to throw away the other part as inadequate for the
locus computation.

4. Algorithm and web implementation

In this section we address the following problem: how to effec-
tively and efficiently compute the different components of a locus,
according to Definitions 3.6 and 3.7 above. Here we propose the
use of the recently developed GröbnerCover algorithm to automat-
ically detect the different components of a locus in a DG system.
This algorithm, inscribed in the theory of parametric polynomial
systems solving, has as input a finite set of parametric polynomi-
als, and outputs a finite partition of the parameter space into locally
closed subsets together with polynomial data, from which the re-
duced Gröbner basis for a given parameter point can be directly
determined.

What follows is a summary of the main properties of this
algorithm, whose details can be found in [33].

Let I ⊂ Q[u][x] be a polynomial ideal for the parameters u =

u1, . . . , um and the variables x = x1, . . . , xn and consider V(I), the
solution set of the system given by I:
V(I) = {(u, x) ∈ Cm+n

: ∀f ∈ I, f (u, x) = 0}.
Given the ideal I ⊂ Q[u][x] (and a monomial order in the vari-

ables), its Gröbner cover (GC) is a set of pairs {(Si, Bi) : 1 ≤ i ≤ s}
of (segment, basis), that classifies the parameter space Cm by the
kind of solutions in the variables:

M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33 27
Table 1
Locus algorithm.

Input: G = {(Si, Bi, lppi) : i ≤ i ≤ s} the Gröbner cover of an ideal
where Si = ∪j Cij and Cij = {(pij, {pijk : 1 ≤ k ≤ rij}) : 1 ≤ j ≤ ri}.

Output: L = Locus(G), the components of the P-representation of the locus
L = {{qi, {qij : 1 ≤ j ≤ si}, typei} : 1 ≤ i ≤ s}

begin
C1 = Select the segments of Gwith dim(lppi) = 0 # normal-segments
C1 = Specialize the basis on every component of C1 and mark the

component Normal if the basis continues to depend on the u’s and
Special if not

C2 = Select all the components of the segments of Gwith dim(lppi) > 0
non-normal segments

L1 = LCUnion(C1);
marking the components of L1 as Normal or Special inheriting
the character of the full
L2 = LCUnion(C2);

Mark the components of L2 of dim(C) = 0 and dim(C) > 0
respectively as Accumulation and Degenerate components

L = L1 ∪ L2
end

1. The segments Si ⊂ Cm are disjoint.
2. The segments Si are locally closed subsets of the parameter

space Cm, expressed in the canonical P-representation, namely

Si =

j

V(pij) \

k

V(pijk)

,

and (pij, (pijk : 1 ≤ k ≤ sij)) is called the jth component of the
ith GC-segment.

3. Associated to each segment Si there is a basis Bi ⊂ Q[u][x] that
specializes to the reduced Gröbner basis of I for every point
u ∈ Si of the segment.

4. The kind of solution in the variables is given by the set of leading
power products (lpp’s) of the bases Bi, that are fixed for each GC
segment Si (and is also explicitly given by the algorithm). Thus,
for all points in the segment, the ideal I has the same number
of solutions.

5. Moreover, if the ideal I is homogeneous, then the lpp’s sets are
different on each segment. (The lpp’s of the homogenized ideal
are also explicitly given by the algorithm for each segment Si as
they characterize the segments.)

4.1. The Locus algorithm

Based on the output of the GröbnerCover algorithm applied
to the system F associated to a DG locus, the Locus algorithm in
Table 1 computes and classifies the locus components.

Definitions 3.4, 3.6 and 3.7 allow us to assign to each segment of
the Gröbner cover a first locus taxonomy, regarding simply the set
of leading power products of the bases (lpp). We obtain segments
of three types:

Type 1 Segments with basis {1} do not belong to the locus. In
particular, the generic segment, which is the unique open
segment in C2 (having thus dimension 2) is expected to
have basis {1}, so the locus components are expected to
have dimension less or equal to 1.

Type 2 Segments with a finite number of solutions correspond to
the normal locus.

Type 3 Segments with an infinite number of solutions correspond
to the non-normal locus.

Inside the normal locus segments of type 2, specializing the
basis over each component allows us to refine the locus taxonomy.
If the specialized basis does not depend on the parameters u, then
the component is labeled ‘Special’. Otherwise it is labeled ‘Normal’.

The non-normal locus segments of type 3 need not be previ-
ously classified.
To obtain the components of the constructible locus sets, the
Locus algorithm has to collect now separately the components
of both kinds of locus: the components of the normal segments
of type 2 and of the non-normal segments of type 3. For this
purpose, it uses the LCUnion algorithm (see [33]) which is de-
signed to compute the canonical P-representation of the addition
of locally closed components given in P-representation. LCUnion
takes the components to be added and outputs the canonical P-
representation of the first level of the resulting constructible set,
and it also returns the components that have not been used be-
cause they belong to higher levels of the constructible set. To build
thewhole constructible set one has to iterate LCUnionwith the re-
maining components. In fact, by Note 3.2, the additions to be done
are locally closed, and so it suffices to use LCUnion only once.

For the normal locus, since the top varieties of the union are
also tops of some component of the components of type 2 that are
added, the label ‘Normal’ or ‘Special’ is inherited from the tops in
LCUnion.

For the non-normal locus, it suffices to add the components of
type 3 using LCUnion, and then label the resulting components
as ‘Accumulation’ if the resulting component of the constructible
set has a finite number of points, and ‘Degenerate’ if it contains
infinitely many points.

The normal and the non-normal loci are disjoint, since a point
in the parameter space cannot be normal and non-normal, and the
GröbnerCover algorithm forms these subsets by adding segments
that are disjoint. But the components inside the normal locus can
have non-empty intersection and in that case the intersection
points will belong to both components.

However, ‘Accumulation’ and ‘Degenerate’ components of the
non-normal locus are disjoint, since ‘Accumulation’ points must
be isolated points not adherent to any higher dimensional com-
ponent, for in that case it would be incorporated to the higher di-
mensional component when considering the union.

4.2. Web implementation

The Locus algorithm detailed in the previous section provides
four different kinds of components for a locus set, namely, normal,
special, degenerate and accumulation components. Although all of
them are algebraically meaningful, only the normal and accumu-
lation components of a locus have been considered true geometric
parts of a dynamic geometry locus.

Following this criterion, a prototype web application that pro-
vides the accurate algebraic and graphic description of a geometric
locus in a DG system has been developed. This prototype, freely ac-
cessible in [35] (where the code is moreover available), includes a
battery of 12 representative examples.

The system consists of a drawing canvas, where the computed
locus is displayed together with the initial elements. It is based on
the free DG system GeoGebra4 and the open source CAS Sage.5

More concretely, to obtain the algebraic description of a given
locus, the algebraic knowledge obtained from a construction in-
troduced through a GeoGebra applet is automatically encoded and
sent to a Sage server, where it is remotely processed by Singu-
lar [36], a system bundled inside the Sage distribution.

Despite the technicalities of the remote interconnection of
GeoGebra and Sage, the web application is presented as a simple
web page with a GeoGebra applet, where to construct/upload a
locus. Given a locus construction (specified using a predetermined
set of GeoGebra commands), the prototype provides the algebraic
description of the locus set by just pressing one button. The process
goes roughly as follows.

4 http://www.geogebra.org.
5 http://www.sagemath.org.

http://www.geogebra.org
http://www.sagemath.org

28 M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33
Fig. 2. A screen capture of the prototype web page.
Despite the technicalities of the remote interconnection of Ge-
oGebra and Sage, the web application is presented as a simple
web page with a GeoGebra applet, where to construct/upload a
locus. Currently, there is a reduced list of admissible GeoGebra
commands involving points (Point, Midpoint), lines (Line, Perpen-
dicularLine) and circles (Circle), together with intersecting objects
(Intersect) and the standard Locus command (see the prototype
web page, where links to the exact meaning of used commands
are given). For a locus construction, the prototype provides the al-
gebraic description of the locus set by just pressing one button. The
process goes roughly as follows.

First, the XML description of the GeoGebra construction is sent
to a Sage cell server [37]. On the server, the construction follows
an algebraization process as specified by a special library [38]. The
obtained parametric polynomial system is then fed into an imple-
mentation in Singular of the GröbnerCover algorithm. The results
are finally returned to the user in text form as well as graphically
in the applet.

A screen capture of the web page with an accurate description
of the limaçon of Pascal discussed in Section 2.2 is shown in Fig. 2.
It provides its graph (thick dotted) together with its description as
an algebraic set. Note that no extra special component is included
in the description, unlike the description provided by standard
algebraic methods, as discussed in Section 2.2.

Although only the normal and accumulation components of a
locus, as provided by the algorithm, are used by the system when
describing the locus, all four sets of components are providedwhen
pressing the Show components (from GC algorithm) button. The
following is the textual information provided by the prototype,
showing the different components for the limaçon of Pascal, where
the extra circle mentioned in Section 2.2 is identified as special.
Components from GC algorithm:
Normal components: [[[x^4+2*x^2*y^2+y^4-12*x^3

-8*x^2*y-12*x*y^2
-8*y^3+53*x^2+48*x*y
+33*y^2-102*x-64*y+ 56]]]

Accumulation components: []
Special components: [[[x^2 + y^2 - 6*x - 8*y + 24]]]
Degenerate components: []

Note that the goal is not to provide a system for a complete
general use, but to showaproof of concept of the feasibility of using
sophisticated algorithms like the GröbnerCover to supplement the
symbolic capabilities of existing dynamic geometry systems, as
well as to show the advantage of connecting different systems by
using web services.

M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33 29
5. Examples

5.1. Example 1: Sketchpad classic construction

We consider the original locus example by Sutherland in
[7, p. 102]6 that can be described as follows:

Let A(xa, ya), B(xb, yb) and C(xc, yc) be three fixed points, and a
and b two lines passing respectively through A and B. Let c be the
circle with center C and radius r . Consider a point G on the circle c
as the mover point. The line CG intersects a in a point I and b in a
point H . We take as tracer the intersection point J of lines AH and
BI (see Fig. 3).

We revisit this example through a simple Gröbner based elimi-
nation approach, as well as through our proposed method.

Assigning symbolic coordinates toH(x1, y1), I(x2, y2),G(x3, y3),
J(x, y), and considering that the equations of lines a and b can be
written as m(X − xa) − (Y − ya) = 0 and n(X − xb) − (Y −

yb) = 0 respectively, it is easy to establish the polynomials for the
construction:

F = (x3 − xc)2 + (y3 − yc)2 − r2,

m(x2 − xa) − (y2 − ya), n(x1 − xb) − (y1 − yb),x1 y1 1
x3 y3 1
xc yc 1

 ,
x2 y2 1
x3 y3 1
xc yc 1

 ,
 x y 1
xa ya 1
x1 y1 1

 ,
 x y 1
xb yb 1
x2 y2 1

 . (1)
In order to minimize the number of parameters, we fix points

A(0, 0), B(3, 0), and the radius r = 5.
To determine the locus, we use basic elimination first. Comput-

ing theGröbner basis of the ideal F(xa = 0, ya = 0, xb = 3, yb = 0,
r = 5) of formula (1) to eliminate the variables x1, y1, x2, y2, x3, y3
(with the graded reverse lexicographical order grevlex(x1, y1, x2,
y2, x3, y3), grevlex(xc, yc, n,m, x, y)) we obtain

mnycx2 + ((m + n)xc − yc − 3n)y2 + (mn(3 − 2xc))xy
− 3mnycx + 3mnxcy (2)

that gives a parametric locus depending on the parameters (xc, yc,
m, n).

Let us now compute the locus using our algorithm. We must
manually fix point C and the parameters m, n to have a concrete
locus problem, as the algorithm does not efficiently deals with free
parameters in its current version. We choose C(1, 3), m = 1 and
n = −1/2.

The specialized system is now:

F0 = (x3 − 1)2 + (y3 − 3)2 − 25,

x2 − y2, x1 − 3 + 2y1,

x1y3 − 3x1 + 3x3 − x3y1 + y1 − y3,

x2y3 − 3x2 + 3x3 − x3y2 + y2 − y3,

−xy1 + x1y,

−xy2 + 3y2 − 3y + x2y. (3)

In Singular we call:

> LIB "grobcov.lib"7;
> ring R=(0,x,y),(x1,y1,x2,y2,x3,y3),dp;
> ideal F0= ---;
> locusdg(grobcov(F0));

where in F0= ---, the lines are to be substituted by Eqs. (3) of the
ideal. We obtain:

6 Available at http://www.cl.cam.ac.uk/techreports/.
7 Library available at http://www-ma2.upc.edu/montes/.
[1]:
[1]:

_[1]=(3x^2+xy-9x+2y^2+3y)
[2]:

[1]:
_[1]=(y^2+8y+65)
_[2]=(7x-y-60)

[2]:
_[1]=(2y+5)
_[2]=(2x-1)

[3]:
_[1]=(4y+7)
_[2]=(2x-7)

[3]:
Normal,1

which, as expected, gives the conic of formula (2) specialized for
the concrete values of the parameters, from which two real points
(1/2, −5/2), (7/2, −7/4) and two complex points (8 + i, −4 +

7i), (8 − i, −4 − 7i), are excluded.
Once the locus equation is known, it is trivial to check that the

conic is tangent to lines AC and BC , a statement mentioned by
Sutherland in [7].

This locus is Example 10 in our prototype [35]. By clicking the
Find locus button, we obtain the picture of Fig. 3, where the de-
scription of the locus as a conic with two missing (real) points is
provided.

It is instructive to analyze where themissing points come from.
Dragging themover pointG tomake lineCGparallel to line a,makes
line BI change, approaching a limit position parallel to CG and a.
Thus BI and a do not intersect, I goes to infinity, and the system
has no solution. This happens for the missing point (1/2, −5/2).
Things are analogous for the missing point (7/2, −7/4).

5.2. Example 2: offset of a circle

Although in this paper we focus on locus computation, our ap-
proach can be efficiently used for computing other derived ele-
ments in a geometric construction, as it will be reported in a future
note. Consider, for instance, the 1-offset of a circle g centered at
the origin with radius 1. The offset is described by the system con-
sisting of the equations of the base circle, the family f of circles
enveloping the offset, and the expression ∂ f

∂a
∂g
∂b −

∂ f
∂b

∂g
∂a :

F = a2 + b2 − 1,

(x − a)2 + (y − b)2 − 1,

4(y − b)a − 4(x − a)b. (4)
Applying the GröbnerCover algorithm to the ideal

J = ⟨a2 + b2 − 1, (x − a)2 + (y − b)2 − 1,
4(y − b)a − 4(x − a)b⟩,

we obtain the following three segments:

Nr. Segment Basis lpp
1 C2

\

V(x2 + y2 − 4) ∪ V(y, x)

{1} {1}

2 V(x2 + y2 − 4) {2b−y, 2a−x} {b, a}
3 V(y, x) {a2 + b2 − 1} {a2}

The Locus algorithm produces two disjoint components with
different character:
V(x2 + y2 − 4) Normal
V(y, x) \ V(1) Accumulation.

The normal component is the circle of radius 2, as expected. For
the accumulation point (0, 0) we have π2(π

−1
1 (0, 0)) = V(a2 +

b2 − 1) and the whole basic circle is part of the solution (a
1-dimensional set of points).

http://www.cl.cam.ac.uk/techreports/
http://www-ma2.upc.edu/montes/

30 M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33
Fig. 3. Description of locus in Example 1 as provided by the prototype.
Fig. 4. Locus described by T (and P) asM runs along its circle.

5.3. Example 3: detecting bad mover positions

When illustrating the prototype (Fig. 2) we considered the li-
maçon of Pascal, showing that the extra circle x2 + y2 − 6x− 8y+

24 = 0 comes fromadegeneration due to the coincidence of points
M and B. It can happen that a degeneracy of the construction forces
the GröbnerCover algorithm to consider thewhole space of param-
eters as solution. More concretely, the first segment of the Gröbn-
erCover algorithm is called the generic segment. It is the unique
open segment in the whole parameter space, i.e. it consists of the
whole parameter space except a variety (of dimension less than the
one of the parameter space itself).

We assumed in the definition of the locus, that the generic
segment has basis {1}, i.e. there is no solution of the system on it,
as the locus is expected to be of dimension less than the parameter
space. Nevertheless, as mentioned above, it could happen that a
construction collapses for some values of the variables. For these
values, the number of constraints decreases and almost all points
are valid parameter values for the system having a solution.

As an example, consider the following locus construction (see
Fig. 4). The point M(y1, y2) runs over the circle with center at
O(3, 1) and radius OA, where A = (3, 4). We construct the line
parallel to the line AM passing through O and the line perpendicu-
lar to it passing through the point B = (3, −2). Both lines intersect
at point P(x1, x2). Construct the line AP and the circle with center
M and radiusMP . We define this intersection as the tracer point(s):
T (x, y).

The polynomial system describing the problem is the ideal F
given by

F = ⟨(y1 − 3)2 + (y2 − 1)2 − 9,

(4 − y2)(x1 − 3) + (y1 − 3)(x2 − 1),

(y1 − 3)(x1 − 3) − (4 − y2)(x2 + 2),

(4 − x2)x + (x1 − 3)y + 3x2 − 4x1,

(x − y1)2 + (y − y2)2 − (y1 − x1)2 − (y2 − x2)2⟩. (5)

When M coincides with A (i.e. y1 = 3, y2 = 4), the above
system reduces to

F = ⟨(3 − 3)2 + (4 − 1)2 − 9,

(4 − 4)(x1 − 3) + (3 − 3)(x2 − 1),

(3 − 3)(x1 − 3) − (4 − 4)(x2 + 2),

(4 − x2)x + (x1 − 3)y + 3x2 − 4x1,

(x − 3)2 + (y − 4)2 − (3 − x1)2 − (4 − x2)2⟩. (6)

Thus, every point in the plane satisfies it. Note that since the
line AM is undefined, there are no constraints on T , which can be
then placed anywhere in the plane. Since we are computing loci at
most linear, the generic segment can be discarded without losing
solutions. This is the approach currently used in the prototype.

M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33 31
Fig. 5. Description of locus as provided by the prototype.
Finally, the result consists of two irreducible normal compo-
nents

V(x2 − 6x + y2 + y + 7)
V(x4 − 12x3 + 2x2y2 − 13x2y + 236x2 − 12xy2 + 78xy

− 1200x + y4 − 13y3 + 60y2 − 85y + 1495).
This locus is Example 9 in our prototype [35]. By clicking the

Find locus button, we obtain the locus description shown on Fig. 5.

5.4. Example 4: automatic deduction of the Steiner–Lehmus theorem

In the previous locus examples, the mover point is constrained
to a one dimensional object, so to sample its path, the user/system
has to perform a bound dragging, as defined in [6]. There, Arzarello
et al. introduce other types of dragging in order to analyze different
kinds of student interactions with dynamic constructions. The
process of searching for plausible geometric conjectures is often
closely related to dragging manipulations. One of these dragging
modalities, the dummy locus dragging, is defined as

. . .moving a basic point so that the drawing keeps a discovered
property; the point which is moved follows a path, even if the
users do not realize this: the locus is not visible and does not
‘speak’ to the students, who do not always realize that they are
dragging along a locus.

We show a non trivial illustration of this kind of locus: we use
our locus algorithm to prove the classic Steiner–Lehmus theorem
that establishes necessary and sufficient conditions for a triangle
to have two equal-length bisectors (we refer the reader to [39] for
details, where a detailed study of the theorem in relation to the
GröbnerCover algorithm is discussed).

More concretely, let us consider the locus set of points C for
which the theorem is true; that is, given a triangle ABC , we search
for the points C for which one bisector at angle A is equal to one
bisector at angle B (internal or external bisectors, see Fig. 6).

Setting points A and B as origin and unit respectively, and as-
signing coordinates C(x, y),M(x1, y1), T (x2, y2), P(p, 0), R(r, 0),
Fig. 6. One bisector at A (AM or AM ′) is equal to one bisector at B (BT or BT ′).

the construction leads to the following polynomial system:

x2 + y2 − p2,
yx1 − (x + p)y1,
y(1 − x1) + (x − 1)y1,

(x − 1)2 + y2 − (r − 1)2,
y(1 − x2) + (x + r − 2)y2,
xy2 − yx2,

x21 + y21 = (x2 − 1)2 + y22.

The GröbnerCover algorithm applied to this system provides 9
segments, each of them having specific properties concerning the
number of solutions, and the Locus algorithm group them into
components. From the locus perspective we are only interested in

32 M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33
Fig. 7. Locus of the Steiner–Lehmus theorem.

the normal and accumulation solutions. Applying the Locus algo-
rithm to the grobcov output, we obtain two normal components
and a degenerate one. In the description, the following curve ap-
pears:
C1 = V(8x10 − 40x9 + 41x8y2 + 76x8 − 164x7y2

− 64x7 + 84x6y4 + 246x6y2 + 16x6 − 252x5y4

− 164x5y2 + 8x5 + 86x4y6 + 278x4y4 + 31x4y2

− 4x4 − 172x3y6 − 136x3y4 + 20x3y2 + 44x2y8

+ 122x2y6 + 14x2y4 − 10x2y2 − 44xy8 − 36xy6

+ 12xy4 + 9y10 + 14y8 − y6 − 6y4 + y2).
The components, with their character, are:

C1 \

V(y, x) ∪ V(y, x − 1) ∪ V(y, 2x2 − 2x − 1)

Normal

V(2x − 1) \ V(y, 2x − 1) Normal
V(y) Degenerate.

In [39], the whole GröbnerCover algorithm output is analyzed,
using the sign of the variables p and q on the solutions, and a
detailed study of which parts of the curves and special points
correspond to which equalities between bisectors of A and B.
In particular, the second component corresponds to the classi-
cal Steiner–Lehmus theorem, well known since the XIX century,
where the inner bisector of A is equal to the inner bisector of B. The
fact that the outer bisectors are also equal over this component is
a new result obtained as a side product.

It is worth remarking that the first component has only been
known since the development of computer algebra methods. The
third component, as well as the holes of the two normal compo-
nents, correspond to degenerate triangles. Fig. 7 shows all three
locus components.

Using our approach, this kind of ‘‘dummy’’ locus computation in
DG systems could be easily automated, thereby allowing students
to tackle general what if questions.

6. Conclusion

In this paper, a taxonomy for locus computation in dynamic ge-
ometry is proposed. By using the efficient GröbnerCover algorithm
for parametric polynomial systems solving, any interactive con-
struction involving a linear locus is automatically analyzed, and the
locus solutions are grouped in such a way that the geometrically
relevant locus components are returned.

This taxonomy efficiently classifies the algebraic parts of loci,
allowing users and systems to advance into a more reliable auto-
matic description of geometric constructions. Using this classifica-
tion, a prototype web application based on a well-known dynamic
geometry system that automatically identifies the different com-
ponents of a locus has been implemented.

Although limited to the complex field, experimental results
show that our approach is both effective and efficient from a prac-
tical point of view, making this technology mature enough to be
incorporated in forthcoming versions of standard interactive en-
vironments. However, since most of these systems currently use
a variety-oriented representation of geometric objects, an exten-
sion of their data structure would be required for the systems to
completely profit from our results.

Acknowledgments

Authors are partially supported by the Spanish ‘‘Ministerio de
Economía y Competitividad’’ and by the European Regional De-
velopment Fund (ERDF), under the Project MTM2011-25816-C02-
02. The third author was supported by projects Gen. Cat. DGR
2009SGR1040 and MICINN MTM2009-07242.

References

[1] Laborde JM, Bellemain F. Cabri geometry II. Dallas: Texas Instruments; 1998.
[2] Jackiw N. The geometer’s sketchpad v 4.0. Key Curriculum Press; 2002.
[3] GeoGebra, http://www.geogebra.org [Last accessed February 2014].
[4] Java Geometry Expert. http://www.cs.wichita.edu/~ye/ [Last accessed Febru-

ary 2014].
[5] Gao XS. Automated geometry diagram construction and engineering geome-

try. In: Gao XS, Wang D, Yang L, editors. ADG 1998. Lecture notes in artificial
intelligence, vol. 1669. Heidelberg: Springer; 1999. p. 232–57.

[6] Arzarello F, Olivero F, Paola D, Robutti O. A cognitive analysis of dragging
practises in Cabri environments. ZDM, Zentralbl Didakt Math 2002;34(3):
66–72. http://dx.doi.org/10.1007/BF02655708.

[7] Sutherland IE. Sketchpad: a man–machine graphical communication system.
Tech. rep. 574. Computer Laboratory, University of Cambridge; 2003.

[8] Botana F. Interactive versus symbolic approaches to plane loci generation
in dynamic geometry environments. In: Sloot PM, Hoekstra A, Tan CK,
Dongarra JJ, editors. Computational science—ICCS 2002. Lecture notes in
computer science, vol. 2330. Berlin (Heidelberg): Springer; 2002. p. 211–8.
http://dx.doi.org/10.1007/3-540-46080-2-22.

[9] Schumann H. A dynamic approach to simple algebraic curves. ZDM, Zentralbl
Didakt Math 2003;35:301–16.

[10] Losada R, Recio T, Valcarce JL. On the automatic discovery of Steiner–Lehmus
generalizations, in: Richter-Gebert J., Schrek P, editors. Proceedings of
ADG’2010, München. 2010. p. 171–4.

[11] Botana F, Abanades M, Escribano J. Exact internet accessible computation of
paths of points in planar linkages and diagrams. Comput Appl Eng Educ 2011;
19:835–41.

[12] Lebmeir P, Richter-Gebert J. Recognition of computationally constructed loci.
In: Botana F, Recio T, editors. Automated deduction in geometry. Lecture notes
in computer science, vol. 4869. Berlin (Heidelberg): Springer; 2007. p. 52–67.
http://dx.doi.org/10.1007/978-3-540-77356-6_4.

[13] GeoGebra GSoC. [link].
URL: http://www.geogebra.org/trac/wiki/LocusLineEquation.

[14] KortenkampU, Richter-Gebert J. Using automatic theorem proving to improve
the usability of geometry software, in: Proceedings of the mathematical user-
interfaces workshop, vol. 2004. 2004.

[15] Kortenkamp U. Foundations of dynamic geometry (Ph.D. thesis). Zurich: Swiss
Federal Institute of Technology; 1999.

[16] Richter-Gebert J, KortenkampU. The interactive geometry software cinderella.
Berlin: Springer; 1999.

[17] Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW. Numerically solving
polynomial systems with Bertini, vol. 25. SIAM; 2013.

[18] Buchberger B. Gröbner bases: an algorithmic method in polynomial ideal
theory. In: Bose NK, editor. Multidimensional systems theory. Dordrecht
(Netherlands): Reidel; 1985. p. 184–232. [Chapter] Gröbner bases: an
algorithmic method in polynomial ideal theory.

[19] Buchberger B. Bruno Buchberger’s Ph.D. thesis 1965: an algorithm for
finding the basis elements of the residue class ring of a zero dimen-
sional polynomial ideal. J Symbolic Comput 2006;41(3–4):475–511.
http://dx.doi.org/10.1016/j.jsc.2005.09.007.
(http://www.sciencedirect.com/science/article/pii/S0747717105001483).

[20] WuWT. Mechanical theorem proving in geometries. Vienna: Springer; 1994.
[21] Chou SC. Mechanical geometry theorem proving. Dordrecht, Netherlands:

D. Reidel Publishing Company; 1988.
[22] Chou SC. Proving elementary geometry theorems using Wu’s algorithm.

In: Bledsoe WW, Loveland DW, editors. Automated theorem proving: after 25
years. Contemporary mathematics, vol. 29. American Mathematical Society;
1984. p. 243–86.

http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref1
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref2
http://www.geogebra.org
http://www.cs.wichita.edu/~ye/
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref5
http://dx.doi.org/doi:10.1007/BF02655708
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref7
http://dx.doi.org/doi:10.1007/3-540-46080-2-22
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref9
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref11
http://dx.doi.org/doi:10.1007/978-3-540-77356-6_4
http://www.geogebra.org/trac/wiki/LocusLineEquation
http://www.geogebra.org/trac/wiki/LocusLineEquation
http://www.geogebra.org/trac/wiki/LocusLineEquation
http://www.geogebra.org/trac/wiki/LocusLineEquation
http://www.geogebra.org/trac/wiki/LocusLineEquation
http://www.geogebra.org/trac/wiki/LocusLineEquation
http://www.geogebra.org/trac/wiki/LocusLineEquation
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref15
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref16
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref17
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref18
http://dx.doi.org/doi:10.1016/j.jsc.2005.09.007
http://www.sciencedirect.com/science/article/pii/S0747717105001483
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref20
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref21
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref22

M.Á. Abánades et al. / Computer-Aided Design 56 (2014) 22–33 33
[23] Roanes-Macías E, Roanes-Lozano E. Búsqueda automática de lugares ge-
ométricos. Bol Soc Puig Adam 1999;53:67–77.

[24] Roanes-Macías E, Roanes-Lozano E. Automatic determination of geometric
loci. 3D-extension of Simson–Steiner theorem. In: Campbell J, Roanes-
Lozano E, editors. Artificial intelligence and symbolic computation. Lecture
notes in computer science, vol. 1930. Berlin (Heidelberg): Springer; 2001.
p. 157–73. http://dx.doi.org/10.1007/3-540-44990-6_12.

[25] Wang D. Geother: a geometry theorem prover. In: McRobbie MA, Slaney JK,
editors. Automated deduction—CADE-13. Lectures notes in computer science,
vol. 1104. Springer; 1996. p. 166–70.

[26] Kapur D. Geometry theorem proving using Hilbert’s Nullstellensatz.
In: Char BW, editor. SYMSAC’86: proceedings of the fifth ACM sympo-
sium on symbolic and algebraic computation. New York (NY, USA): ACM
Press; 1986. p. 202–8.

[27] Kapur D. Using Gröbner bases to reason about geometry problems. J Symbolic
Comput 1986;2(4):399–408.

[28] Kutzler B, Stifter S. Automated geometry theorem proving using Buchberger’s
algorithm. In: Char BW, editor. SYMSAC’86: proceedings of the fifth ACM
symposiumon symbolic and algebraic computation. NewYork (NY,USA): ACM
Press; 1986. p. 209–14.

[29] Recio T, Vélez MP. Automatic discovery of theorems in elementary geometry.
J Automat Reason 1999;23:63–82.

[30] Botana F, Valcarce JL. A software tool for the investigation of plane loci. Math
Comput Simul 2003;61(2):139–52.
[31] Gerhäuser M, Wassermann A. Automatic calculation of plane loci using
Gröbner bases and integration into a dynamic geometry system. In: Schreck P,
Narboux J, Richter-Gebert J, editors. Automated deduction in geometry.
Lecture notes in computer science, vol. 6877. Berlin (Heidelberg): Springer;
2011. p. 68–77. http://dx.doi.org/10.1007/978-3-642-25070-5_4.

[32] Escribano J, Botana F, AbánadesMA. Adding remote computational capabilities
to dynamic geometry systems. Math Comput Simul 2010;80:1177–84.

[33] Montes A,WibmerM. Gröbner bases for polynomial systemswith parameters.
J Symbolic Comput 2010;45:1391–425.

[34] Grothendieck A, Dieudonné J. Eléments de géométrie algébrique. Le langage
des schèmes. Vol. 166. Springer-Verlag; 1971.

[35] Locus Prototype, http://webs.uvigo.es/fbotana/LocusGC/. 2012.
[36] Singular, http://www.singular.uni-kl.de/ [Last accessed February 2014].
[37] Sage, Sage cell server [Last accessed February 2014]. URL: https://github.com/

sagemath/sagecell.
[38] Botana F. On the parametric representation of dynamic geometry construc-

tions. In: Murgante B, Gervasi O, Iglesias A, Taniar D, Apduhan B, editors.
Computational science and its applications—ICCSA 2011. Lecture notes in
computer science, vol. 6785. Berlin (Heidelberg): Springer; 2011. p. 342–52.
http://dx.doi.org/10.1007/978-3-642-21898-9_30.

[39] Montes A, Recio T. Generalizing the Steiner–Lehmus theorem using the
Gröbner cover. Math Comput Simul 2014; [in press] URL: http://dx.doi.org/
10.1016/j.matcom.2013.06.006.

http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref23
http://dx.doi.org/doi:10.1007/3-540-44990-6_12
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref25
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref26
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref27
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref28
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref29
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref30
http://dx.doi.org/doi:10.1007/978-3-642-25070-5_4
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref32
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref33
http://refhub.elsevier.com/S0010-4485(14)00126-2/sbref34
http://webs.uvigo.es/fbotana/LocusGC/
http://www.singular.uni-kl.de/
https://github.com/sagemath/sagecell
https://github.com/sagemath/sagecell
https://github.com/sagemath/sagecell
https://github.com/sagemath/sagecell
https://github.com/sagemath/sagecell
http://dx.doi.org/doi:10.1007/978-3-642-21898-9_30
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006
http://dx.doi.org/10.1016/j.matcom.2013.06.006

	An algebraic taxonomy for locus computation in dynamic geometry
	Introduction
	Locus computation in dynamic geometry: approaches and limitations
	The traditional method: loci by sampling
	Improvements to the traditional method
	Locus recognition by minimizing distance to algebraic curves
	Randomized theorem proving techniques in cinderella
	Locus discovery with algebraic elimination techniques

	A taxonomy of loci as projections
	Algorithm and web implementation
	The Locus algorithm
	Web implementation

	Examples
	Example 1: Sketchpad classic construction
	Example 2: offset of a circle
	Example 3: detecting bad mover positions
	Example 4: automatic deduction of the Steiner--Lehmus theorem

	Conclusion
	Acknowledgments
	References

